利用强化规划优化航空公司座位分配

Muhammad Imam Isfahani, Ali Ridho Barakbah, Entin Martiana
{"title":"利用强化规划优化航空公司座位分配","authors":"Muhammad Imam Isfahani, Ali Ridho Barakbah, Entin Martiana","doi":"10.1109/ELECSYM.2015.7380841","DOIUrl":null,"url":null,"abstract":"Low season is always be a big problem for the airlines as the occupant hugely decreased when compared to peak season. Generally, to attract more occupant in low season the airlines will sell more discount fare but the other hand they must balancing the seat allocation to avoid loss. This paper proposed new approach to optimizing the seat allocation. This approach using new algorithm which use the basic concept from reinforcement learning called reinforcement programming. First, we using the previous data to random the initial set of solution. Afterward we enforce some rule and objective function to make initial solution move toward the best solution. Finally, solution will show the revenue and a set of seat allocation for each subclass. We compare result of our idea into several optimization algorithm. The experimental result show the effectiveness of our idea to solve this seat allocation problem.","PeriodicalId":248906,"journal":{"name":"2015 International Electronics Symposium (IES)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing airline seat allocation using reinforcement programming\",\"authors\":\"Muhammad Imam Isfahani, Ali Ridho Barakbah, Entin Martiana\",\"doi\":\"10.1109/ELECSYM.2015.7380841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low season is always be a big problem for the airlines as the occupant hugely decreased when compared to peak season. Generally, to attract more occupant in low season the airlines will sell more discount fare but the other hand they must balancing the seat allocation to avoid loss. This paper proposed new approach to optimizing the seat allocation. This approach using new algorithm which use the basic concept from reinforcement learning called reinforcement programming. First, we using the previous data to random the initial set of solution. Afterward we enforce some rule and objective function to make initial solution move toward the best solution. Finally, solution will show the revenue and a set of seat allocation for each subclass. We compare result of our idea into several optimization algorithm. The experimental result show the effectiveness of our idea to solve this seat allocation problem.\",\"PeriodicalId\":248906,\"journal\":{\"name\":\"2015 International Electronics Symposium (IES)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Electronics Symposium (IES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECSYM.2015.7380841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECSYM.2015.7380841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于航空公司来说,淡季总是一个大问题,因为与旺季相比,乘客数量大幅减少。一般来说,为了在淡季吸引更多的乘客,航空公司会出售更多的折扣机票,但另一方面,他们必须平衡座位分配,以避免损失。本文提出了优化座位分配的新方法。这种方法使用了一种新的算法,它使用了强化学习的基本概念,称为强化规划。首先,我们利用之前的数据对初始解集进行随机化。在此基础上,通过引入一些规则和目标函数,使初始解向最优解移动。最后,解决方案将显示每个子类的收入和一组席位分配。我们将这一思想的结果与几种优化算法进行了比较。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing airline seat allocation using reinforcement programming
Low season is always be a big problem for the airlines as the occupant hugely decreased when compared to peak season. Generally, to attract more occupant in low season the airlines will sell more discount fare but the other hand they must balancing the seat allocation to avoid loss. This paper proposed new approach to optimizing the seat allocation. This approach using new algorithm which use the basic concept from reinforcement learning called reinforcement programming. First, we using the previous data to random the initial set of solution. Afterward we enforce some rule and objective function to make initial solution move toward the best solution. Finally, solution will show the revenue and a set of seat allocation for each subclass. We compare result of our idea into several optimization algorithm. The experimental result show the effectiveness of our idea to solve this seat allocation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
River water-quality analysis: “critical contaminate detection”, “classification of multiple-water-quality-parameters values” and “real-time notification” by rspa processes Comparison of five time series EMG features extractions using Myo Armband Validity currency detector with optical sensor using backpropagation Mobile monitoring of muscular strain sensor based on Wireless Body Area Network Using of array of 8 ultrasonic transducers On accoustic tomography for image reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1