利用图卷积网络合成音乐数据条件下的逼真人体舞蹈动作

João Pedro Moreira Ferreira, Renato Martins, E. R. Nascimento
{"title":"利用图卷积网络合成音乐数据条件下的逼真人体舞蹈动作","authors":"João Pedro Moreira Ferreira, Renato Martins, E. R. Nascimento","doi":"10.5753/CTD.2021.15762","DOIUrl":null,"url":null,"abstract":"Learning to move naturally from music, i.e., to dance, is one of the most complex motions humans often perform effortlessly. Existing techniques of automatic dance generation with classical CNN and RNN models undergo training and variability issues due to the non-Euclidean geometry of the motion manifold. We design a novel method based on GCNs to tackle the problem of automatic dance generation from audio. Our method uses an adversarial learning scheme conditioned on the input music audios to create natural motions. The results demonstrate that the proposed GCN model outperforms the state-of-the-art in different experiments. Visual results of the motion generation and explanation can be visualized through the link: http://youtu.be/fGDK6UkKzvA","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Realistic Human Dance Motions Conditioned by Musical Data using Graph Convolutional Networks\",\"authors\":\"João Pedro Moreira Ferreira, Renato Martins, E. R. Nascimento\",\"doi\":\"10.5753/CTD.2021.15762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to move naturally from music, i.e., to dance, is one of the most complex motions humans often perform effortlessly. Existing techniques of automatic dance generation with classical CNN and RNN models undergo training and variability issues due to the non-Euclidean geometry of the motion manifold. We design a novel method based on GCNs to tackle the problem of automatic dance generation from audio. Our method uses an adversarial learning scheme conditioned on the input music audios to create natural motions. The results demonstrate that the proposed GCN model outperforms the state-of-the-art in different experiments. Visual results of the motion generation and explanation can be visualized through the link: http://youtu.be/fGDK6UkKzvA\",\"PeriodicalId\":236085,\"journal\":{\"name\":\"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/CTD.2021.15762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/CTD.2021.15762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学习从音乐中自然地移动,即跳舞,是人类经常毫不费力地完成的最复杂的动作之一。现有的基于经典CNN和RNN模型的自动舞蹈生成技术由于运动流形的非欧几里德几何而存在训练和可变性问题。我们设计了一种新的基于GCNs的方法来解决音频自动生成舞蹈的问题。我们的方法使用一种对抗性学习方案,以输入音乐音频为条件来创建自然动作。实验结果表明,本文提出的GCN模型在不同的实验中都优于现有的模型。运动生成和解释的可视化结果可以通过链接:http://youtu.be/fGDK6UkKzvA可视化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesizing Realistic Human Dance Motions Conditioned by Musical Data using Graph Convolutional Networks
Learning to move naturally from music, i.e., to dance, is one of the most complex motions humans often perform effortlessly. Existing techniques of automatic dance generation with classical CNN and RNN models undergo training and variability issues due to the non-Euclidean geometry of the motion manifold. We design a novel method based on GCNs to tackle the problem of automatic dance generation from audio. Our method uses an adversarial learning scheme conditioned on the input music audios to create natural motions. The results demonstrate that the proposed GCN model outperforms the state-of-the-art in different experiments. Visual results of the motion generation and explanation can be visualized through the link: http://youtu.be/fGDK6UkKzvA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shared Memory Verification for Multicore Chip Designs Characterizing the Relationship Between Unitary Quantum Walks and Non-Homogeneous Random Walks Towards Automatic Fake News Detection in Digital Platforms: Properties, Limitations, and Applications Sunflower Theorems in Monotone Circuit Complexity On the Helly Property of Some Intersection Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1