更好地结合:融合视觉显著性方法来检索感知相似的图像

Amanda Fernandez, Siwei Lyu
{"title":"更好地结合:融合视觉显著性方法来检索感知相似的图像","authors":"Amanda Fernandez, Siwei Lyu","doi":"10.1109/ICCE.2015.7066502","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a new model of visual saliency by fusing results from existing saliency methods. We first briefly survey existing saliency models, and justify the fusion methods as they take advantage of the strengths of all existing works. Initial experiments indicate that the fused saliency methods generate results closer to the ground-truth than the original methods alone. We apply our method to content-based image retrieval, leveraging a fusion method as a feature extractor. We perform experimental evaluation and show a marked improvement in retrieval performance using our fusion method over individual saliency models.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Better together: Fusing visual saliency methods for retrieving perceptually-similar images\",\"authors\":\"Amanda Fernandez, Siwei Lyu\",\"doi\":\"10.1109/ICCE.2015.7066502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a new model of visual saliency by fusing results from existing saliency methods. We first briefly survey existing saliency models, and justify the fusion methods as they take advantage of the strengths of all existing works. Initial experiments indicate that the fused saliency methods generate results closer to the ground-truth than the original methods alone. We apply our method to content-based image retrieval, leveraging a fusion method as a feature extractor. We perform experimental evaluation and show a marked improvement in retrieval performance using our fusion method over individual saliency models.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文通过融合现有显著性方法的结果,描述了一种新的视觉显著性模型。我们首先简要地调查了现有的显著性模型,并证明了融合方法,因为它们利用了所有现有作品的优势。初步实验表明,融合显著性方法产生的结果比单独的原始方法更接近真实情况。我们将该方法应用于基于内容的图像检索,利用融合方法作为特征提取器。我们进行了实验评估,并显示使用我们的融合方法在检索性能上显着改善了个体显著性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Better together: Fusing visual saliency methods for retrieving perceptually-similar images
In this paper, we describe a new model of visual saliency by fusing results from existing saliency methods. We first briefly survey existing saliency models, and justify the fusion methods as they take advantage of the strengths of all existing works. Initial experiments indicate that the fused saliency methods generate results closer to the ground-truth than the original methods alone. We apply our method to content-based image retrieval, leveraging a fusion method as a feature extractor. We perform experimental evaluation and show a marked improvement in retrieval performance using our fusion method over individual saliency models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lua-based self-management framework for Internet of Things Indoor location technique based on visible light communications and ultrasound emitters LDA-based face recognition using multiple distance training face images with low user cooperation Fast and efficient haze removal Fast and robust camera's auto exposure control using convex or concave model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1