红泥催化fenton反应处理橄榄厂废水的研究

Mha Albqmi, Amani Belaiba, G. Hodaifa
{"title":"红泥催化fenton反应处理橄榄厂废水的研究","authors":"Mha Albqmi, Amani Belaiba, G. Hodaifa","doi":"10.5593/sgem2022v/4.2/s18.19","DOIUrl":null,"url":null,"abstract":"The worldwide olive oil sector is a strategic sector for olive oil producing countries due to olive oil nutrition and health benefits. With what is being produced of olive oil, it continues to produce wastewater with a significant environmental impact due to the high organic load and the biochemical composition of this wastewater, particularly, the presence of microbial growth inhibiting compounds such as phenolic compounds, which makes its biological treatment difficult. On other way, red mud, the main leaching residue resulting from the alkaline treatment of bauxite (Bayer process), can be used as catalyst in chemical processing. Bayer red mud reveals high alkalinity, strong water absorption, and a large content of iron. The presence of metals in the composition of the red mud, such as iron dioxide (hematite), titanium dioxide, etc. allows its use as a catalyst in advanced oxidation processes. In this work, red mud has been revalued as a catalyst in the treatment of olive mill wastewater (OMW) by Fenton reaction. All experiments were carried out at laboratory scale in reactor with capacity of 500 cm3. Experiments have been carried out at different concentrations of red mud 0.05, 0.10, 0.5, 1.0, 2.0, 4.0, 5.0, 20, and 30 g/L. In parallel, three control experiments were carried out using only hydrogen peroxide or hydrochloric acid or red mud without pH adjustment (adsorption experiment). Experimental results have determined that the introduction of red mud as a catalyst in the like Fenton reaction (H2O2/red mud) with concentrations higher than 0.05 g/L has allowed the increase of the degradation percentages until reaching stable values at red mud concentrations higher than 5 g/L. The removal percentages at 0.5 g/L of red mud were COD = 47.1 %, total organic carbon (TOC) = 58.1 %, total carbon (TC) = 66.8 %, total nitrogen = 44.1 %, and total phenolic compounds (TPCs) = 63.5 % versus 57.2 % for COD, 74.4 % for TOC, 79.9 % for TC, 70.7 % for TN, and 66.0 % for TPCs in Fenton like reaction with 5 g/L of red mud. The common operating conditions were initial COD of OMW = 6171.9 mg O2/L, initial TOC of OMW = 3253.7 mg/L, pH = 3, magnetic agitation speed = 460 rpm, environment temperature, and the H2O2 at 10 % (w/v) added to the OMW according to the stoichiometry of the reaction. Given these results, it can be concluded that red mud can be a promising catalyst in oxidation systems based on the Fenton reaction allowing the incorporation of wastes into new green processes leading to the achievement of circular economy in industrial processes.","PeriodicalId":234250,"journal":{"name":"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VALORIZATION OF RED MUD AS A CATALYST IN THE TREATMENT OF OLIVE MILL WASTEWATER BY FENTON REACTION\",\"authors\":\"Mha Albqmi, Amani Belaiba, G. Hodaifa\",\"doi\":\"10.5593/sgem2022v/4.2/s18.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The worldwide olive oil sector is a strategic sector for olive oil producing countries due to olive oil nutrition and health benefits. With what is being produced of olive oil, it continues to produce wastewater with a significant environmental impact due to the high organic load and the biochemical composition of this wastewater, particularly, the presence of microbial growth inhibiting compounds such as phenolic compounds, which makes its biological treatment difficult. On other way, red mud, the main leaching residue resulting from the alkaline treatment of bauxite (Bayer process), can be used as catalyst in chemical processing. Bayer red mud reveals high alkalinity, strong water absorption, and a large content of iron. The presence of metals in the composition of the red mud, such as iron dioxide (hematite), titanium dioxide, etc. allows its use as a catalyst in advanced oxidation processes. In this work, red mud has been revalued as a catalyst in the treatment of olive mill wastewater (OMW) by Fenton reaction. All experiments were carried out at laboratory scale in reactor with capacity of 500 cm3. Experiments have been carried out at different concentrations of red mud 0.05, 0.10, 0.5, 1.0, 2.0, 4.0, 5.0, 20, and 30 g/L. In parallel, three control experiments were carried out using only hydrogen peroxide or hydrochloric acid or red mud without pH adjustment (adsorption experiment). Experimental results have determined that the introduction of red mud as a catalyst in the like Fenton reaction (H2O2/red mud) with concentrations higher than 0.05 g/L has allowed the increase of the degradation percentages until reaching stable values at red mud concentrations higher than 5 g/L. The removal percentages at 0.5 g/L of red mud were COD = 47.1 %, total organic carbon (TOC) = 58.1 %, total carbon (TC) = 66.8 %, total nitrogen = 44.1 %, and total phenolic compounds (TPCs) = 63.5 % versus 57.2 % for COD, 74.4 % for TOC, 79.9 % for TC, 70.7 % for TN, and 66.0 % for TPCs in Fenton like reaction with 5 g/L of red mud. The common operating conditions were initial COD of OMW = 6171.9 mg O2/L, initial TOC of OMW = 3253.7 mg/L, pH = 3, magnetic agitation speed = 460 rpm, environment temperature, and the H2O2 at 10 % (w/v) added to the OMW according to the stoichiometry of the reaction. Given these results, it can be concluded that red mud can be a promising catalyst in oxidation systems based on the Fenton reaction allowing the incorporation of wastes into new green processes leading to the achievement of circular economy in industrial processes.\",\"PeriodicalId\":234250,\"journal\":{\"name\":\"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5593/sgem2022v/4.2/s18.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5593/sgem2022v/4.2/s18.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于橄榄油的营养和健康益处,世界橄榄油行业是橄榄油生产国的战略部门。由于橄榄油的高有机负荷和废水的生化成分,特别是酚类化合物等抑制微生物生长的化合物的存在,使其难以进行生物处理,因此它继续产生对环境有重大影响的废水。另一方面,铝土矿碱性处理(拜耳法)产生的主要浸出渣赤泥可作为化学加工的催化剂。拜耳赤泥碱度高,吸水性强,含铁量大。在赤泥的成分中存在金属,如二氧化铁(赤铁矿)、二氧化钛等,使其在高级氧化过程中用作催化剂。本研究重新评价了赤泥作为Fenton反应处理橄榄厂废水(OMW)的催化剂。所有实验均在实验室规模的500cm3反应器中进行。实验分别在不同浓度的赤泥0.05、0.10、0.5、1.0、2.0、4.0、5.0、20、30 g/L下进行。同时进行3个对照实验,分别使用双氧水、盐酸或不调整pH值的赤泥(吸附实验)。实验结果表明,在浓度大于0.05 g/L的类Fenton反应(H2O2/赤泥)中引入赤泥作为催化剂,可以使降解率提高,直至赤泥浓度大于5 g/L时达到稳定值。在0.5 g/L赤泥条件下,COD去除率为47.1%,总有机碳(TOC)去除率为58.1%,总碳(TC)去除率为66.8%,总氮去除率为44.1%,总酚类化合物(TPCs)去除率为63.5%,而在5 g/L赤泥条件下,COD去除率为57.2%,TOC去除率为74.4%,TC去除率为79.9%,TN去除率为70.7%,TPCs去除率为66.0%。常用的操作条件为:OMW的初始COD = 6171.9 mg O2/L, OMW的初始TOC = 3253.7 mg/L, pH = 3,磁搅拌转速= 460 rpm,环境温度,根据反应的化学计量学,向OMW中加入10% (w/v)的H2O2。鉴于这些结果,可以得出结论,赤泥可以成为基于芬顿反应的氧化系统中有前途的催化剂,允许将废物纳入新的绿色工艺,从而实现工业过程中的循环经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VALORIZATION OF RED MUD AS A CATALYST IN THE TREATMENT OF OLIVE MILL WASTEWATER BY FENTON REACTION
The worldwide olive oil sector is a strategic sector for olive oil producing countries due to olive oil nutrition and health benefits. With what is being produced of olive oil, it continues to produce wastewater with a significant environmental impact due to the high organic load and the biochemical composition of this wastewater, particularly, the presence of microbial growth inhibiting compounds such as phenolic compounds, which makes its biological treatment difficult. On other way, red mud, the main leaching residue resulting from the alkaline treatment of bauxite (Bayer process), can be used as catalyst in chemical processing. Bayer red mud reveals high alkalinity, strong water absorption, and a large content of iron. The presence of metals in the composition of the red mud, such as iron dioxide (hematite), titanium dioxide, etc. allows its use as a catalyst in advanced oxidation processes. In this work, red mud has been revalued as a catalyst in the treatment of olive mill wastewater (OMW) by Fenton reaction. All experiments were carried out at laboratory scale in reactor with capacity of 500 cm3. Experiments have been carried out at different concentrations of red mud 0.05, 0.10, 0.5, 1.0, 2.0, 4.0, 5.0, 20, and 30 g/L. In parallel, three control experiments were carried out using only hydrogen peroxide or hydrochloric acid or red mud without pH adjustment (adsorption experiment). Experimental results have determined that the introduction of red mud as a catalyst in the like Fenton reaction (H2O2/red mud) with concentrations higher than 0.05 g/L has allowed the increase of the degradation percentages until reaching stable values at red mud concentrations higher than 5 g/L. The removal percentages at 0.5 g/L of red mud were COD = 47.1 %, total organic carbon (TOC) = 58.1 %, total carbon (TC) = 66.8 %, total nitrogen = 44.1 %, and total phenolic compounds (TPCs) = 63.5 % versus 57.2 % for COD, 74.4 % for TOC, 79.9 % for TC, 70.7 % for TN, and 66.0 % for TPCs in Fenton like reaction with 5 g/L of red mud. The common operating conditions were initial COD of OMW = 6171.9 mg O2/L, initial TOC of OMW = 3253.7 mg/L, pH = 3, magnetic agitation speed = 460 rpm, environment temperature, and the H2O2 at 10 % (w/v) added to the OMW according to the stoichiometry of the reaction. Given these results, it can be concluded that red mud can be a promising catalyst in oxidation systems based on the Fenton reaction allowing the incorporation of wastes into new green processes leading to the achievement of circular economy in industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMPROVEMENT OF SOIL RESILIENCE TO ENVIRONMENTAL CHALLENGES USING DIFFERENT FOOD WASTES AS SOIL AMENDMENTS ITALIAN LEGISLATION IN FORCE FOR THE ESTABLISHMENT OF RENEWABLE ENERGY COMMUNITIES AND CITIZENS EFFECT OF SHARED ELECTRIC SCOOTERS ON URBAN GREEN HOUSE GAS EMISSIONS: CASE OF RIGA INFLUENCE OF GROWN CULTURE ON N2O FORMATION FARM MANAGEMENT PRACTICE IMPACT ON N2O EMISSION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1