{"title":"仿射非线性系统的数据驱动微分对策","authors":"Conghui Ma, Bin Zhang, Lutao Yan, Haiyuan Li","doi":"10.1109/IC-NIDC54101.2021.9660508","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven optimal approach based on differential dynamic programming (DDP) for two-person differential game of nonlinear affine systems. Using test data, the Hamilton-Jacobi-Isaacs (HJI) equation is expanded into a set of high-order differential equations. Basis functions is adopted to approximate the unknown system function and value function. Based on the approximation, a data-driven optimal approach is proposed to obtain the unknown coefficients of the basis functions. A numerical example is proposed to demonstrate the effectiveness of this method.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Differential Games for Affine Nonlinear Systems\",\"authors\":\"Conghui Ma, Bin Zhang, Lutao Yan, Haiyuan Li\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a data-driven optimal approach based on differential dynamic programming (DDP) for two-person differential game of nonlinear affine systems. Using test data, the Hamilton-Jacobi-Isaacs (HJI) equation is expanded into a set of high-order differential equations. Basis functions is adopted to approximate the unknown system function and value function. Based on the approximation, a data-driven optimal approach is proposed to obtain the unknown coefficients of the basis functions. A numerical example is proposed to demonstrate the effectiveness of this method.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven Differential Games for Affine Nonlinear Systems
This paper presents a data-driven optimal approach based on differential dynamic programming (DDP) for two-person differential game of nonlinear affine systems. Using test data, the Hamilton-Jacobi-Isaacs (HJI) equation is expanded into a set of high-order differential equations. Basis functions is adopted to approximate the unknown system function and value function. Based on the approximation, a data-driven optimal approach is proposed to obtain the unknown coefficients of the basis functions. A numerical example is proposed to demonstrate the effectiveness of this method.