fMRI数据电视范数重建的最佳采样几何

Oliver M. Jeromin, V. Calhoun, M. Pattichis
{"title":"fMRI数据电视范数重建的最佳采样几何","authors":"Oliver M. Jeromin, V. Calhoun, M. Pattichis","doi":"10.1109/ACSSC.2008.5074649","DOIUrl":null,"url":null,"abstract":"This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal sampling geometries for TV-norm reconstruction of fMRI data\",\"authors\":\"Oliver M. Jeromin, V. Calhoun, M. Pattichis\",\"doi\":\"10.1109/ACSSC.2008.5074649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.\",\"PeriodicalId\":416114,\"journal\":{\"name\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2008.5074649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了从有限数量的k空间样本重建功能性磁共振成像(fMRI)脑切片的能力。我们使用压缩感知方法重建脑成像活动使用不同的k空间采样几何。为了确定最佳的采样几何形状,我们计算了重构误差。在这里,对于每个几何,我们还估计了总变异(TV)范数和L-2范数惩罚函数的最佳加权参数。初步结果表明,最佳采样几何形状随所需k空间采样密度减少(减少60%至90%)的函数而显著变化。此外,重构的fMRI切片可用于从大量减少的k空间样本中准确检测神经活动区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal sampling geometries for TV-norm reconstruction of fMRI data
This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavenumber domain focusing of squinted SAR data with a curved orbit geometry An automated three-dimensional visualization and classification of emphysema using neural network Analysis of voltage overscaled computer arithmetics in low power signal processing systems End-to-end antenna selection strategies for multi-hop relay channels Distributed demodulation using consensus averaging in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1