用倒谱hrtf提取中位面语音源的双耳定位

Dumidu S. Talagala, Xiang Wu, Wen Zhang, T. Abhayapala
{"title":"用倒谱hrtf提取中位面语音源的双耳定位","authors":"Dumidu S. Talagala, Xiang Wu, Wen Zhang, T. Abhayapala","doi":"10.5281/ZENODO.44021","DOIUrl":null,"url":null,"abstract":"In binaural systems, source localization in the median plane is challenging due to the difficulty of exploring the spectral cues of the head-related transfer function (HRTF) independently of the source spectra. This paper presents a method of extracting the HRTF spectral cues using cepstral analysis for speech source localization in the median plane. Binaural signals are preprocessed in the cepstral domain so that the fine spectral structure of speech and the HRTF spectral envelope can be easily separated. We introduce (i) a truncated cepstral transformation to extract the relevant localization cues, and (ii) a mechanism to normalize the effects of the time varying speech spectra. The proposed method is evaluated and compared with a convolution based localization method using a speech corpus of multiple speakers. The results suggest that the proposed method fully exploits the available spectral cues for robust speaker independent binaural source localization in the median plane.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Binaural localization of speech sources in the median plane using cepstral hrtf extraction\",\"authors\":\"Dumidu S. Talagala, Xiang Wu, Wen Zhang, T. Abhayapala\",\"doi\":\"10.5281/ZENODO.44021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In binaural systems, source localization in the median plane is challenging due to the difficulty of exploring the spectral cues of the head-related transfer function (HRTF) independently of the source spectra. This paper presents a method of extracting the HRTF spectral cues using cepstral analysis for speech source localization in the median plane. Binaural signals are preprocessed in the cepstral domain so that the fine spectral structure of speech and the HRTF spectral envelope can be easily separated. We introduce (i) a truncated cepstral transformation to extract the relevant localization cues, and (ii) a mechanism to normalize the effects of the time varying speech spectra. The proposed method is evaluated and compared with a convolution based localization method using a speech corpus of multiple speakers. The results suggest that the proposed method fully exploits the available spectral cues for robust speaker independent binaural source localization in the median plane.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在双耳系统中,由于难以独立于源光谱探索头部相关传递函数(HRTF)的光谱线索,因此在中位面定位源具有挑战性。本文提出了一种利用倒谱分析提取HRTF频谱线索的方法,用于中位面声源定位。在倒谱域对双耳信号进行预处理,使语音的精细频谱结构和HRTF频谱包络容易分离。我们引入了(i)截断倒谱变换来提取相关的定位线索,以及(ii)一种机制来标准化时变语音频谱的影响。利用多说话人的语音语料库对该方法进行了评价,并与基于卷积的定位方法进行了比较。结果表明,该方法充分利用了可用的频谱线索,实现了与说话人无关的双耳源在中位面上的鲁棒定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binaural localization of speech sources in the median plane using cepstral hrtf extraction
In binaural systems, source localization in the median plane is challenging due to the difficulty of exploring the spectral cues of the head-related transfer function (HRTF) independently of the source spectra. This paper presents a method of extracting the HRTF spectral cues using cepstral analysis for speech source localization in the median plane. Binaural signals are preprocessed in the cepstral domain so that the fine spectral structure of speech and the HRTF spectral envelope can be easily separated. We introduce (i) a truncated cepstral transformation to extract the relevant localization cues, and (ii) a mechanism to normalize the effects of the time varying speech spectra. The proposed method is evaluated and compared with a convolution based localization method using a speech corpus of multiple speakers. The results suggest that the proposed method fully exploits the available spectral cues for robust speaker independent binaural source localization in the median plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1