基于训练POD-RBF和灰狼优化器的换热参数估计

M. Nguyen, N. Nguyen, T. T. Truong
{"title":"基于训练POD-RBF和灰狼优化器的换热参数估计","authors":"M. Nguyen, N. Nguyen, T. T. Truong","doi":"10.15625/0866-7136/15015","DOIUrl":null,"url":null,"abstract":"The article presents a numerical model for estimation of heat transfer parameters, e.g. thermal conductivity and convective coefficient, in two-dimensional solid bodies under steady-state conduction. This inverse problem is stated as an optimization problem, in which input is reference temperature data and the output is the design variables, i.e. the thermal properties to be identified. The search for optimum design variables is conducted by using a recent heuristic method, namely Grey Wolf Optimizer. During the heuristic search, direct heat conduction problem has to be solved several times. The set of heat transfer parameters that lead to smallest error rate between computed temperature field and reference one is the optimum output of the inverse problem. In order to accelerate the process, the model order reduction technique Proper-Orthogonal-Decomposition (POD) is used. The idea is to express the direct solution (temperature field) as a linear combination of orthogonal basis vectors. Practically, a majority of the basis vectors can be truncated, without losing much accuracy. The amplitude of this reduced-order approximation is then further interpolated by Radial Basis Functions (RBF). The whole scheme, named as trained POD-RBF, is then used as a surrogate model to retrieve the heat transfer parameters.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of heat transfer parameters by using trained POD-RBF and Grey Wolf Optimizer\",\"authors\":\"M. Nguyen, N. Nguyen, T. T. Truong\",\"doi\":\"10.15625/0866-7136/15015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents a numerical model for estimation of heat transfer parameters, e.g. thermal conductivity and convective coefficient, in two-dimensional solid bodies under steady-state conduction. This inverse problem is stated as an optimization problem, in which input is reference temperature data and the output is the design variables, i.e. the thermal properties to be identified. The search for optimum design variables is conducted by using a recent heuristic method, namely Grey Wolf Optimizer. During the heuristic search, direct heat conduction problem has to be solved several times. The set of heat transfer parameters that lead to smallest error rate between computed temperature field and reference one is the optimum output of the inverse problem. In order to accelerate the process, the model order reduction technique Proper-Orthogonal-Decomposition (POD) is used. The idea is to express the direct solution (temperature field) as a linear combination of orthogonal basis vectors. Practically, a majority of the basis vectors can be truncated, without losing much accuracy. The amplitude of this reduced-order approximation is then further interpolated by Radial Basis Functions (RBF). The whole scheme, named as trained POD-RBF, is then used as a surrogate model to retrieve the heat transfer parameters.\",\"PeriodicalId\":239329,\"journal\":{\"name\":\"Vietnam Journal of Mechanics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0866-7136/15015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/15015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了二维固体稳态导热传热参数(导热系数和对流系数)的数值计算模型。将此反问题表述为优化问题,其中输入为参考温度数据,输出为设计变量,即待识别的热性能。采用一种最新的启发式方法——灰狼优化器来寻找最优设计变量。在启发式搜索过程中,需要求解多次直接热传导问题。使计算温度场与参考温度场错误率最小的传热参数集是反问题的最优输出。为了加速该过程,采用了模型降阶技术——适当正交分解(POD)。其思想是将直接解(温度场)表示为正交基向量的线性组合。实际上,大多数基向量可以被截断,而不会损失太多精度。然后通过径向基函数(RBF)进一步插值该降阶近似的振幅。然后将整个方案称为训练POD-RBF,作为替代模型来检索传热参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of heat transfer parameters by using trained POD-RBF and Grey Wolf Optimizer
The article presents a numerical model for estimation of heat transfer parameters, e.g. thermal conductivity and convective coefficient, in two-dimensional solid bodies under steady-state conduction. This inverse problem is stated as an optimization problem, in which input is reference temperature data and the output is the design variables, i.e. the thermal properties to be identified. The search for optimum design variables is conducted by using a recent heuristic method, namely Grey Wolf Optimizer. During the heuristic search, direct heat conduction problem has to be solved several times. The set of heat transfer parameters that lead to smallest error rate between computed temperature field and reference one is the optimum output of the inverse problem. In order to accelerate the process, the model order reduction technique Proper-Orthogonal-Decomposition (POD) is used. The idea is to express the direct solution (temperature field) as a linear combination of orthogonal basis vectors. Practically, a majority of the basis vectors can be truncated, without losing much accuracy. The amplitude of this reduced-order approximation is then further interpolated by Radial Basis Functions (RBF). The whole scheme, named as trained POD-RBF, is then used as a surrogate model to retrieve the heat transfer parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of small punch test to estimate mechanical behaviour of SUS304 austenitic stainless steel Size-dependent nonlinear bending of microbeams based on a third-order shear deformation theory Wave propagation in context of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality Application of newly proposed hardening laws for structural steel rods Proportional Topology Optimization algorithm with virtual elements for multi-material problems considering mass and cost constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1