基于SOM-PNN分类器的体数据可视化概率分割

Feng Ma, Wenping Wang, W. W. Tsang, Zesheng Tang, Shaowei Xia, Xin Tong
{"title":"基于SOM-PNN分类器的体数据可视化概率分割","authors":"Feng Ma, Wenping Wang, W. W. Tsang, Zesheng Tang, Shaowei Xia, Xin Tong","doi":"10.1145/288126.288162","DOIUrl":null,"url":null,"abstract":"We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.","PeriodicalId":167141,"journal":{"name":"IEEE Symposium on Volume Visualization (Cat. No.989EX300)","volume":"20 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Probabilistic segmentation of volume data for visualization using SOM-PNN classifier\",\"authors\":\"Feng Ma, Wenping Wang, W. W. Tsang, Zesheng Tang, Shaowei Xia, Xin Tong\",\"doi\":\"10.1145/288126.288162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.\",\"PeriodicalId\":167141,\"journal\":{\"name\":\"IEEE Symposium on Volume Visualization (Cat. No.989EX300)\",\"volume\":\"20 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Volume Visualization (Cat. No.989EX300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288126.288162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Volume Visualization (Cat. No.989EX300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288126.288162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种新的概率分类器,称为SOM-PNN分类器,用于体数据的分类和可视化。该分类器使用贝叶斯置信度进行概率分类,这在体绘制中是非常理想的。基于大量训练数据集训练的SOM地图,我们的SOM-PNN分类器使用PNN算法执行概率分类。SOM和PNN的结合使用克服了参数方法、非参数方法和SOM方法的缺点。所提出的SOM-PNN分类器已被用于分割CT树懒数据和20个人类MRI脑体积,从而产生比其他方法更具信息量的3D渲染,具有更多细节和更少的伪影。数值比较表明,SOM-PNN分类器是一种快速、准确、概率化的体绘制分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic segmentation of volume data for visualization using SOM-PNN classifier
We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-automatic generation of transfer functions for direct volume rendering Coloring voxel-based objects for virtual endoscopy An accurate method for voxelizing polygon meshes Adaptive perspective ray casting A real-time volume rendering architecture using an adaptive resampling scheme for parallel and perspective projections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1