{"title":"家电智能调度,降低家庭能源消耗","authors":"Kitty Stacpoole, Hongjian Sun, Jing Jiang","doi":"10.1109/ICCChinaW.2019.8849955","DOIUrl":null,"url":null,"abstract":"Demand side response (DSR) and the interconnectivity of smart technologies will be essential to transform and revolutionize the way consumers engage with the energy industry. The carbon intensity of electricity varies throughout the day as a result of emissions released during generation. These fluctuations in carbon intensity are predicted to increase due to increased penetration of variable generation sources. This paper proposes a novel insight into how reductions in domestic emissions can be achieved, through the scheduling of certain wet appliances to optimally manage low carbon electricity. An appliance detecting and scheduling algorithm is presented and results are generated using real demand data, electricity generation and carbon intensity values. Reductions were achieved from the variations in grid carbon intensity and the availability of solar generation from a household photovoltaic (PV) supply.","PeriodicalId":252172,"journal":{"name":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Scheduling of Household Appliances to Decarbonise Domestic Energy Consumption\",\"authors\":\"Kitty Stacpoole, Hongjian Sun, Jing Jiang\",\"doi\":\"10.1109/ICCChinaW.2019.8849955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand side response (DSR) and the interconnectivity of smart technologies will be essential to transform and revolutionize the way consumers engage with the energy industry. The carbon intensity of electricity varies throughout the day as a result of emissions released during generation. These fluctuations in carbon intensity are predicted to increase due to increased penetration of variable generation sources. This paper proposes a novel insight into how reductions in domestic emissions can be achieved, through the scheduling of certain wet appliances to optimally manage low carbon electricity. An appliance detecting and scheduling algorithm is presented and results are generated using real demand data, electricity generation and carbon intensity values. Reductions were achieved from the variations in grid carbon intensity and the availability of solar generation from a household photovoltaic (PV) supply.\",\"PeriodicalId\":252172,\"journal\":{\"name\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChinaW.2019.8849955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2019.8849955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart Scheduling of Household Appliances to Decarbonise Domestic Energy Consumption
Demand side response (DSR) and the interconnectivity of smart technologies will be essential to transform and revolutionize the way consumers engage with the energy industry. The carbon intensity of electricity varies throughout the day as a result of emissions released during generation. These fluctuations in carbon intensity are predicted to increase due to increased penetration of variable generation sources. This paper proposes a novel insight into how reductions in domestic emissions can be achieved, through the scheduling of certain wet appliances to optimally manage low carbon electricity. An appliance detecting and scheduling algorithm is presented and results are generated using real demand data, electricity generation and carbon intensity values. Reductions were achieved from the variations in grid carbon intensity and the availability of solar generation from a household photovoltaic (PV) supply.