{"title":"一种可穿戴指尖触觉装置的设计:研究用于映射可变柔度平台的变刚度材料","authors":"Samir Morad, Zainab Jaffer, S. Dogramadzi","doi":"10.1142/s2424905x21500057","DOIUrl":null,"url":null,"abstract":"Previously, a pneumatic design of a fingertip haptic device (FHD) was developed for virtual reality applications. In this paper, the feasibility of representing tissues of varying stiffness is investigated. Physical properties, stiffness and Young’s modulus of the variable compliance platform (VCP) were compared with a set of bolus materials representing soft tissues. Young’s moduli of the bolus materials were ten times higher than those from the VCP, whereas the stiffness was fairly similar. Hence, stiffness is the common parameter that could be used to map the FHD to the bolus materials.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform\",\"authors\":\"Samir Morad, Zainab Jaffer, S. Dogramadzi\",\"doi\":\"10.1142/s2424905x21500057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, a pneumatic design of a fingertip haptic device (FHD) was developed for virtual reality applications. In this paper, the feasibility of representing tissues of varying stiffness is investigated. Physical properties, stiffness and Young’s modulus of the variable compliance platform (VCP) were compared with a set of bolus materials representing soft tissues. Young’s moduli of the bolus materials were ten times higher than those from the VCP, whereas the stiffness was fairly similar. Hence, stiffness is the common parameter that could be used to map the FHD to the bolus materials.\",\"PeriodicalId\":447761,\"journal\":{\"name\":\"J. Medical Robotics Res.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Robotics Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424905x21500057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Robotics Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424905x21500057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform
Previously, a pneumatic design of a fingertip haptic device (FHD) was developed for virtual reality applications. In this paper, the feasibility of representing tissues of varying stiffness is investigated. Physical properties, stiffness and Young’s modulus of the variable compliance platform (VCP) were compared with a set of bolus materials representing soft tissues. Young’s moduli of the bolus materials were ten times higher than those from the VCP, whereas the stiffness was fairly similar. Hence, stiffness is the common parameter that could be used to map the FHD to the bolus materials.