利用神经网络多任务学习提高面部表情识别性能

Jeongin Seo, Changhun Hyun, Hyeyoung Park
{"title":"利用神经网络多任务学习提高面部表情识别性能","authors":"Jeongin Seo, Changhun Hyun, Hyeyoung Park","doi":"10.1145/2814940.2815011","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.","PeriodicalId":427567,"journal":{"name":"Proceedings of the 3rd International Conference on Human-Agent Interaction","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Performance of Facial Expression Recognition using Multi-task Learning of Neural Networks\",\"authors\":\"Jeongin Seo, Changhun Hyun, Hyeyoung Park\",\"doi\":\"10.1145/2814940.2815011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.\",\"PeriodicalId\":427567,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2814940.2815011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814940.2815011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面部表情识别是人机交互领域的一个重要课题,因为面部表情是人类可以传递给他人的简单而深刻的信号。尽管对面部图像分析的研究已经很多,但由于人类表情的多样性和面部图像的巨大变化,表情识别的性能仍然令人难以接受。在本文中,我们尝试使用神经网络的多任务学习技术来提高面部表情识别的性能。通过在基准数据库上的计算实验,我们展示了使用多任务学习提高性能的积极可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Performance of Facial Expression Recognition using Multi-task Learning of Neural Networks
Facial expression recognition is an important topic in the field of human-agent interaction, because facial expression is simple and impressive signal which human can send to others. Though there have been numerous studies on facial image analysis, the performance of expression recognition is still not acceptable due to the diversity of human expression and enormous variations in facial images. In this paper, we try to improve the performance of facial expression recognition by using multi-task learning techniques of neural networks. Through computational experiments on a benchmark database, we show positive possibility of performance improvement using multi-task learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Disaster Early Warning via a Configurable Data Collection Framework and Real-time Analytics Personification Aspect of Conversational Agents as Representations of a Physical Object Effects of Behavioral Complexity on Intention Attribution to Robots Spatial Communication and Recognition in Human-agent Interaction using Motion-parallax-based 3DCG Virtual Agent EEG Analysis on 3D Navigation in Virtual Realty with Different Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1