基于神经网络的室内拥挤环境位置识别技术

A. Perera, Ravindra Ranasinghe, G. Dissanayake
{"title":"基于神经网络的室内拥挤环境位置识别技术","authors":"A. Perera, Ravindra Ranasinghe, G. Dissanayake","doi":"10.1109/ICIEA.2017.8283155","DOIUrl":null,"url":null,"abstract":"Place recognition in a crowded and cluttered environment is a challenging task due to its dynamic characteristics such as moving obstacles, varying lighting conditions and occlusions. This work presents a robust place recognition technique that could be applied into a similar environment, by combining well known Bag of Words technique with a feedforward neural network. The feedforward neural network we use have three layers with a single hidden layer and it relies on rectifier and softmax activation functions. We employ cross entropy function to model the cost of our neural network and utilize Adam algorithm for minimizing this cost at the training phase. The output layer with softmax activation in the neural network, produces a vector of probabilities which represent the likelihood of test image being captured from a given region. These values are further improved by incorporating a transition matrix which is based on the building layout. We have evaluated our neural network based place recognition technique with data collected from a crowded indoor shopping mall and promising results have been observed by this approach. We also have analyzed the behavior of neural network for changes in hyper-parameters and presented the results.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A neural network based place recognition technique for a crowded indoor environment\",\"authors\":\"A. Perera, Ravindra Ranasinghe, G. Dissanayake\",\"doi\":\"10.1109/ICIEA.2017.8283155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Place recognition in a crowded and cluttered environment is a challenging task due to its dynamic characteristics such as moving obstacles, varying lighting conditions and occlusions. This work presents a robust place recognition technique that could be applied into a similar environment, by combining well known Bag of Words technique with a feedforward neural network. The feedforward neural network we use have three layers with a single hidden layer and it relies on rectifier and softmax activation functions. We employ cross entropy function to model the cost of our neural network and utilize Adam algorithm for minimizing this cost at the training phase. The output layer with softmax activation in the neural network, produces a vector of probabilities which represent the likelihood of test image being captured from a given region. These values are further improved by incorporating a transition matrix which is based on the building layout. We have evaluated our neural network based place recognition technique with data collected from a crowded indoor shopping mall and promising results have been observed by this approach. We also have analyzed the behavior of neural network for changes in hyper-parameters and presented the results.\",\"PeriodicalId\":443463,\"journal\":{\"name\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2017.8283155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在拥挤和混乱的环境中,由于其动态特征,如移动的障碍物、不同的照明条件和遮挡,位置识别是一项具有挑战性的任务。这项工作提出了一种鲁棒的位置识别技术,可以应用于类似的环境中,通过将众所周知的词袋技术与前馈神经网络相结合。我们使用的前馈神经网络有三层和一个隐藏层,它依赖于整流和softmax激活函数。我们采用交叉熵函数对神经网络的成本进行建模,并利用Adam算法在训练阶段最小化该成本。神经网络中具有softmax激活的输出层产生一个概率向量,表示从给定区域捕获测试图像的可能性。通过结合基于建筑布局的过渡矩阵,这些价值得到进一步提高。我们用从一个拥挤的室内购物中心收集的数据来评估我们基于神经网络的位置识别技术,并通过这种方法观察到有希望的结果。我们还分析了神经网络在超参数变化时的行为,并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural network based place recognition technique for a crowded indoor environment
Place recognition in a crowded and cluttered environment is a challenging task due to its dynamic characteristics such as moving obstacles, varying lighting conditions and occlusions. This work presents a robust place recognition technique that could be applied into a similar environment, by combining well known Bag of Words technique with a feedforward neural network. The feedforward neural network we use have three layers with a single hidden layer and it relies on rectifier and softmax activation functions. We employ cross entropy function to model the cost of our neural network and utilize Adam algorithm for minimizing this cost at the training phase. The output layer with softmax activation in the neural network, produces a vector of probabilities which represent the likelihood of test image being captured from a given region. These values are further improved by incorporating a transition matrix which is based on the building layout. We have evaluated our neural network based place recognition technique with data collected from a crowded indoor shopping mall and promising results have been observed by this approach. We also have analyzed the behavior of neural network for changes in hyper-parameters and presented the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1