{"title":"多无人机协同编队避碰控制的实验验证","authors":"Y. Kuriki, T. Namerikawa","doi":"10.1109/ICARA.2015.7081204","DOIUrl":null,"url":null,"abstract":"In this study, we consider cooperative control issues for a multi-unmanned aerial vehicle (UAV) system. Specifically, we present a cooperative formation control strategy for a multi-UAV system with unidirectional network links. Our strategy is to apply a consensus-based algorithm and leader-follower structure to the UAVs so that they can cooperatively fly in formation. The leader provides each UAV with commands to generate a geometric configuration of the formation. Convergence is guaranteed when the cooperative formation control algorithm is applied to the UAVs. Collisions among UAVs can occur when they are flying with the cooperative control UAVs. Our strategy for collision avoidance is to apply an artificial potential approach to the UAVs. Experiments are performed on multiple commercial small UAVs to validate the proposed formation control algorithm with collision-avoidance capability.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Experimental validation of cooperative formation control with collision avoidance for a multi-UAV system\",\"authors\":\"Y. Kuriki, T. Namerikawa\",\"doi\":\"10.1109/ICARA.2015.7081204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider cooperative control issues for a multi-unmanned aerial vehicle (UAV) system. Specifically, we present a cooperative formation control strategy for a multi-UAV system with unidirectional network links. Our strategy is to apply a consensus-based algorithm and leader-follower structure to the UAVs so that they can cooperatively fly in formation. The leader provides each UAV with commands to generate a geometric configuration of the formation. Convergence is guaranteed when the cooperative formation control algorithm is applied to the UAVs. Collisions among UAVs can occur when they are flying with the cooperative control UAVs. Our strategy for collision avoidance is to apply an artificial potential approach to the UAVs. Experiments are performed on multiple commercial small UAVs to validate the proposed formation control algorithm with collision-avoidance capability.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental validation of cooperative formation control with collision avoidance for a multi-UAV system
In this study, we consider cooperative control issues for a multi-unmanned aerial vehicle (UAV) system. Specifically, we present a cooperative formation control strategy for a multi-UAV system with unidirectional network links. Our strategy is to apply a consensus-based algorithm and leader-follower structure to the UAVs so that they can cooperatively fly in formation. The leader provides each UAV with commands to generate a geometric configuration of the formation. Convergence is guaranteed when the cooperative formation control algorithm is applied to the UAVs. Collisions among UAVs can occur when they are flying with the cooperative control UAVs. Our strategy for collision avoidance is to apply an artificial potential approach to the UAVs. Experiments are performed on multiple commercial small UAVs to validate the proposed formation control algorithm with collision-avoidance capability.