基于神经网络的空间天线失效行为识别

M. Sartori, P. Antsaklis
{"title":"基于神经网络的空间天线失效行为识别","authors":"M. Sartori, P. Antsaklis","doi":"10.1109/ACC.1992.4175125","DOIUrl":null,"url":null,"abstract":"Using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method employs three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test's results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multi-layer perceptron, the second uses a multi-layer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses back-propagation trained neural networks.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Failure Behavior Identification for a Space Antenna via Neural Networks\",\"authors\":\"M. Sartori, P. Antsaklis\",\"doi\":\"10.1109/ACC.1992.4175125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method employs three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test's results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multi-layer perceptron, the second uses a multi-layer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses back-propagation trained neural networks.\",\"PeriodicalId\":297258,\"journal\":{\"name\":\"1992 American Control Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1992.4175125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1992.4175125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了一种基于神经网络的空间天线模型失效行为识别方法。该方法分为三个阶段。如果通过第一阶段故障检测发现存在故障,则对天线进行诊断测试。诊断测试的结果分别用于第二阶段和第三阶段,以确定发生了哪些故障,并诊断故障的程度。第一阶段使用多层感知器,第二阶段使用多层感知器和用二次优化算法(一种新的训练过程)训练的神经网络,第三阶段使用反向传播训练的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure Behavior Identification for a Space Antenna via Neural Networks
Using neural networks, a method for the failure behavior identification of a space antenna model is investigated. The proposed method employs three stages. If a fault is suspected by the first stage of fault detection, a diagnostic test is performed on the antenna. The diagnostic test's results are used by the second and third stages to identify which fault occurred and to diagnose the extent of the fault, respectively. The first stage uses a multi-layer perceptron, the second uses a multi-layer perceptron and neural networks trained with the quadratic optimization algorithm, a novel training procedure, and the third stage uses back-propagation trained neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Four Discrete-Time Repetitive Control Algorithms Adaptive Feedback Control of Linear Stochastic Systems General Structure of Time-Optimal Control of Robotic Manipulators Moving Along Prescribed Paths Practical computation of the mixed μ problem A Parameterization of Minimal Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1