{"title":"针对移动故障的最佳弹性","authors":"H. Buhrman, J. Garay, J. Hoepman","doi":"10.1109/FTCS.1995.466995","DOIUrl":null,"url":null,"abstract":"We consider a model where malicious agents can corrupt hosts and move around in a network of processors. We consider a family of mobile fault models MF(t/n-1,/spl rho/). In MF(t/n-1,/spl rho/) there are a total of n processors, the maximum number of mobile faults is t, and their roaming pace is /spl rho/ (for example, /spl rho/=3 means that it takes an agent at least 3 rounds to \"hop\" to the next host). We study in these models the classical testbed problem for fault tolerant distributed computing: Byzantine agreement. It has been shown that if /spl rho/=1, then agreement cannot be reached in the presence of even one fault, unless one of the processors remains uncorrupted for a certain amount of time. Subject to this proviso, we present a protocol for MF(/sup 1///sub 3/,1), which is optimal. The running time of the protocol is O(n) rounds, also optimal for these models.<<ETX>>","PeriodicalId":309075,"journal":{"name":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Optimal resiliency against mobile faults\",\"authors\":\"H. Buhrman, J. Garay, J. Hoepman\",\"doi\":\"10.1109/FTCS.1995.466995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a model where malicious agents can corrupt hosts and move around in a network of processors. We consider a family of mobile fault models MF(t/n-1,/spl rho/). In MF(t/n-1,/spl rho/) there are a total of n processors, the maximum number of mobile faults is t, and their roaming pace is /spl rho/ (for example, /spl rho/=3 means that it takes an agent at least 3 rounds to \\\"hop\\\" to the next host). We study in these models the classical testbed problem for fault tolerant distributed computing: Byzantine agreement. It has been shown that if /spl rho/=1, then agreement cannot be reached in the presence of even one fault, unless one of the processors remains uncorrupted for a certain amount of time. Subject to this proviso, we present a protocol for MF(/sup 1///sub 3/,1), which is optimal. The running time of the protocol is O(n) rounds, also optimal for these models.<<ETX>>\",\"PeriodicalId\":309075,\"journal\":{\"name\":\"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1995.466995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1995.466995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a model where malicious agents can corrupt hosts and move around in a network of processors. We consider a family of mobile fault models MF(t/n-1,/spl rho/). In MF(t/n-1,/spl rho/) there are a total of n processors, the maximum number of mobile faults is t, and their roaming pace is /spl rho/ (for example, /spl rho/=3 means that it takes an agent at least 3 rounds to "hop" to the next host). We study in these models the classical testbed problem for fault tolerant distributed computing: Byzantine agreement. It has been shown that if /spl rho/=1, then agreement cannot be reached in the presence of even one fault, unless one of the processors remains uncorrupted for a certain amount of time. Subject to this proviso, we present a protocol for MF(/sup 1///sub 3/,1), which is optimal. The running time of the protocol is O(n) rounds, also optimal for these models.<>