可穿戴电子产品用凝胶电解质纤维基有机电化学晶体管的稳定性

Nestor O. Marquez Rios, A. Takshi
{"title":"可穿戴电子产品用凝胶电解质纤维基有机电化学晶体管的稳定性","authors":"Nestor O. Marquez Rios, A. Takshi","doi":"10.1117/12.2633175","DOIUrl":null,"url":null,"abstract":"With the increasing interest in wearable electronics, still, building electronic circuits on fabrics is challenging. Among different approaches, fiber shape electrochemical transistors are potentially suitable for various applications, particularly for bioelectronics. Fiber-based devices are getting popular because of their low fabrication cost, lightweight, and mechanical flexibility without losing their properties as sensors and transistors. In this work, we have studied an organic electrochemical transistor made from two conductive threads with a gel electrolyte. The transistor was tested when it was exposed to an acidic solution which then showed a change in the drain current. The results from testing the conductive thread between the drain and source reviled the effect of the pH on the PEDOT:PSS coating used as the semiconducting material in the transistor design. The results are encouraging for the applications in new low-cost, flexible bioelectronics sensing devices.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability of fiber-based organic electrochemical transistors with a gel electrolyte for wearable electronics\",\"authors\":\"Nestor O. Marquez Rios, A. Takshi\",\"doi\":\"10.1117/12.2633175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing interest in wearable electronics, still, building electronic circuits on fabrics is challenging. Among different approaches, fiber shape electrochemical transistors are potentially suitable for various applications, particularly for bioelectronics. Fiber-based devices are getting popular because of their low fabrication cost, lightweight, and mechanical flexibility without losing their properties as sensors and transistors. In this work, we have studied an organic electrochemical transistor made from two conductive threads with a gel electrolyte. The transistor was tested when it was exposed to an acidic solution which then showed a change in the drain current. The results from testing the conductive thread between the drain and source reviled the effect of the pH on the PEDOT:PSS coating used as the semiconducting material in the transistor design. The results are encouraging for the applications in new low-cost, flexible bioelectronics sensing devices.\",\"PeriodicalId\":145218,\"journal\":{\"name\":\"Organic Photonics + Electronics\",\"volume\":\"451 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Photonics + Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着人们对可穿戴电子产品的兴趣日益浓厚,在织物上构建电子电路仍是一项挑战。在不同的方法中,光纤形状的电化学晶体管有可能适用于各种应用,特别是生物电子学。基于光纤的设备越来越受欢迎,因为它们制造成本低、重量轻、机械灵活性好,同时又不失去传感器和晶体管的特性。在这项工作中,我们研究了一种由两根导电线和凝胶电解质制成的有机电化学晶体管。当晶体管暴露在酸性溶液中时,测试结果显示漏极电流发生了变化。测试漏极和源极之间的导电线的结果揭示了pH值对晶体管设计中用作半导体材料的PEDOT:PSS涂层的影响。这一结果对于在新型低成本、柔性生物电子传感装置中的应用是令人鼓舞的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of fiber-based organic electrochemical transistors with a gel electrolyte for wearable electronics
With the increasing interest in wearable electronics, still, building electronic circuits on fabrics is challenging. Among different approaches, fiber shape electrochemical transistors are potentially suitable for various applications, particularly for bioelectronics. Fiber-based devices are getting popular because of their low fabrication cost, lightweight, and mechanical flexibility without losing their properties as sensors and transistors. In this work, we have studied an organic electrochemical transistor made from two conductive threads with a gel electrolyte. The transistor was tested when it was exposed to an acidic solution which then showed a change in the drain current. The results from testing the conductive thread between the drain and source reviled the effect of the pH on the PEDOT:PSS coating used as the semiconducting material in the transistor design. The results are encouraging for the applications in new low-cost, flexible bioelectronics sensing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1