车辆路径问题的混合行为蚁群算法

Miao Wang
{"title":"车辆路径问题的混合行为蚁群算法","authors":"Miao Wang","doi":"10.1109/ICCIS.2012.168","DOIUrl":null,"url":null,"abstract":"Vehicle Routing Problem (VRP) is one of critical problems in modern logistics service. In order to overcome the shortcomings of the basic Ant Colony Optimization (ACO) algorithm, which has long searching time and easily jumps into local optimal solution, a hybrid behavior ACO algorithm is presented for solving the VRP problem. A series of rules of the ants' behaviors are defined. The simulation results show that the above approach is reasonable and efficient.","PeriodicalId":269967,"journal":{"name":"2012 Fourth International Conference on Computational and Information Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Behavior Ant Colony Algorithm for Vehicle Routing Problem\",\"authors\":\"Miao Wang\",\"doi\":\"10.1109/ICCIS.2012.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle Routing Problem (VRP) is one of critical problems in modern logistics service. In order to overcome the shortcomings of the basic Ant Colony Optimization (ACO) algorithm, which has long searching time and easily jumps into local optimal solution, a hybrid behavior ACO algorithm is presented for solving the VRP problem. A series of rules of the ants' behaviors are defined. The simulation results show that the above approach is reasonable and efficient.\",\"PeriodicalId\":269967,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2012.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2012.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

车辆路径问题(VRP)是现代物流服务中的关键问题之一。为了克服蚁群算法搜索时间长、易陷入局部最优解的缺点,提出了一种求解VRP问题的混合行为蚁群算法。定义了蚂蚁的一系列行为规则。仿真结果表明,该方法是合理有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Behavior Ant Colony Algorithm for Vehicle Routing Problem
Vehicle Routing Problem (VRP) is one of critical problems in modern logistics service. In order to overcome the shortcomings of the basic Ant Colony Optimization (ACO) algorithm, which has long searching time and easily jumps into local optimal solution, a hybrid behavior ACO algorithm is presented for solving the VRP problem. A series of rules of the ants' behaviors are defined. The simulation results show that the above approach is reasonable and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Battle Damage Level Prediction Using Hybrid-learning Algorithm Resource Modeling and Analysis of Real-Time Software Based on Process Algebra Design and Simulation of Random Access Procedure in TD-LTE E-commerce Entrepreneurship Education Research of College Students Majoring in Ceramics Art Design An Image Hiding Scheme Based on 3D Skew Tent Map and Discrete Wavelet Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1