基于词汇和语义特征的数据驱动的一般误语检测

Felix Schneider, Björn Barz, Phillip Brandes, Sophie Marshall, Joachim Denzler
{"title":"基于词汇和语义特征的数据驱动的一般误语检测","authors":"Felix Schneider, Björn Barz, Phillip Brandes, Sophie Marshall, Joachim Denzler","doi":"10.18653/v1/2021.latechclfl-1.11","DOIUrl":null,"url":null,"abstract":"Automatic detection of stylistic devices is an important tool for literary studies, e.g., for stylometric analysis or argument mining. A particularly striking device is the rhetorical figure called chiasmus, which involves the inversion of semantically or syntactically related words. Existing works focus on a special case of chiasmi that involve identical words in an A B B A pattern, so-called antimetaboles. In contrast, we propose an approach targeting the more general and challenging case A B B’ A’, where the words A, A’ and B, B’ constituting the chiasmus do not need to be identical but just related in meaning. To this end, we generalize the established candidate phrase mining strategy from antimetaboles to general chiasmi and propose novel features based on word embeddings and lemmata for capturing both semantic and syntactic information. These features serve as input for a logistic regression classifier, which learns to distinguish between rhetorical chiasmi and coincidental chiastic word orders without special meaning. We evaluate our approach on two datasets consisting of classical German dramas, four texts with annotated chiasmi and 500 unannotated texts. Compared to previous methods for chiasmus detection, our novel features improve the average precision from 17% to 28% and the precision among the top 100 results from 13% to 35%.","PeriodicalId":441300,"journal":{"name":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-Driven Detection of General Chiasmi Using Lexical and Semantic Features\",\"authors\":\"Felix Schneider, Björn Barz, Phillip Brandes, Sophie Marshall, Joachim Denzler\",\"doi\":\"10.18653/v1/2021.latechclfl-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of stylistic devices is an important tool for literary studies, e.g., for stylometric analysis or argument mining. A particularly striking device is the rhetorical figure called chiasmus, which involves the inversion of semantically or syntactically related words. Existing works focus on a special case of chiasmi that involve identical words in an A B B A pattern, so-called antimetaboles. In contrast, we propose an approach targeting the more general and challenging case A B B’ A’, where the words A, A’ and B, B’ constituting the chiasmus do not need to be identical but just related in meaning. To this end, we generalize the established candidate phrase mining strategy from antimetaboles to general chiasmi and propose novel features based on word embeddings and lemmata for capturing both semantic and syntactic information. These features serve as input for a logistic regression classifier, which learns to distinguish between rhetorical chiasmi and coincidental chiastic word orders without special meaning. We evaluate our approach on two datasets consisting of classical German dramas, four texts with annotated chiasmi and 500 unannotated texts. Compared to previous methods for chiasmus detection, our novel features improve the average precision from 17% to 28% and the precision among the top 100 results from 13% to 35%.\",\"PeriodicalId\":441300,\"journal\":{\"name\":\"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.latechclfl-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.latechclfl-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文体手段的自动检测是文学研究的重要工具,例如文体分析或论据挖掘。一种特别引人注目的修辞手法是所谓的交错法,它涉及到语义或句法上相关词语的反转。现有的研究集中在一种特殊情况下的交错,即涉及相同的单词以a B B a模式出现,即所谓的抗代谢。相比之下,我们提出了一种针对更一般和更具挑战性的案例A B B ' A '的方法,其中构成交错的单词A, A '和B, B '不需要相同,只需在意义上相关即可。为此,我们将已建立的候选短语挖掘策略从抗代谢物推广到一般交错,并提出了基于词嵌入和引理的新特征来捕获语义和句法信息。这些特征作为逻辑回归分类器的输入,逻辑回归分类器学习区分没有特殊意义的修辞交错和巧合交错词序。我们在两个数据集上评估了我们的方法,这些数据集包括古典德国戏剧,四个带有注释的交错文本和500个未注释的文本。与以前的交叉检测方法相比,我们的新特征将平均精度从17%提高到28%,前100个结果的精度从13%提高到35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Detection of General Chiasmi Using Lexical and Semantic Features
Automatic detection of stylistic devices is an important tool for literary studies, e.g., for stylometric analysis or argument mining. A particularly striking device is the rhetorical figure called chiasmus, which involves the inversion of semantically or syntactically related words. Existing works focus on a special case of chiasmi that involve identical words in an A B B A pattern, so-called antimetaboles. In contrast, we propose an approach targeting the more general and challenging case A B B’ A’, where the words A, A’ and B, B’ constituting the chiasmus do not need to be identical but just related in meaning. To this end, we generalize the established candidate phrase mining strategy from antimetaboles to general chiasmi and propose novel features based on word embeddings and lemmata for capturing both semantic and syntactic information. These features serve as input for a logistic regression classifier, which learns to distinguish between rhetorical chiasmi and coincidental chiastic word orders without special meaning. We evaluate our approach on two datasets consisting of classical German dramas, four texts with annotated chiasmi and 500 unannotated texts. Compared to previous methods for chiasmus detection, our novel features improve the average precision from 17% to 28% and the precision among the top 100 results from 13% to 35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FrameNet-like Annotation of Olfactory Information in Texts The Early Modern Dutch Mediascape. Detecting Media Mentions in Chronicles Using Word Embeddings and CRF Period Classification in Chinese Historical Texts A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek The Multilingual Corpus of Survey Questionnaires Query Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1