基于软传感器的鲁棒移动机器人自定位

U. Maniscalco, Ignazio Infantino, Adriano Manfré
{"title":"基于软传感器的鲁棒移动机器人自定位","authors":"U. Maniscalco, Ignazio Infantino, Adriano Manfré","doi":"10.1109/IRIS.2017.8250092","DOIUrl":null,"url":null,"abstract":"The Mobile Robot Self-Localization is always a crucial aspect of the autonomous navigation task. The challenge of self-locating become complicated when the robot has sensors having low-level precision and accuracy. This work faces this aspect finding a solution by the using of the soft sensor paradigm. Various sources of information regarding the robot localisation are involved in a data fusion mechanism to get a more accurate estimation of the position of a mobile robot. Statistical considerations concerning the probability of a correct estimate for each source of information constitute the kernel of the soft sensor for the mobile robot self-localization. The soft sensor also computes the geometric transformations needed to correct all the different positions of the robot achieved by each source of information. Moreover, the paper reports an experiment of localization based on the combination of measures arising from a probabilistic approach (based on Adaptive Monte Carlo Localization) and the robot odometry. The proposed approach improves the accuracy of the autonomous navigation by means of a dynamic choice of the best available measure at any moment.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust mobile robot self-localization by soft sensor paradigm\",\"authors\":\"U. Maniscalco, Ignazio Infantino, Adriano Manfré\",\"doi\":\"10.1109/IRIS.2017.8250092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mobile Robot Self-Localization is always a crucial aspect of the autonomous navigation task. The challenge of self-locating become complicated when the robot has sensors having low-level precision and accuracy. This work faces this aspect finding a solution by the using of the soft sensor paradigm. Various sources of information regarding the robot localisation are involved in a data fusion mechanism to get a more accurate estimation of the position of a mobile robot. Statistical considerations concerning the probability of a correct estimate for each source of information constitute the kernel of the soft sensor for the mobile robot self-localization. The soft sensor also computes the geometric transformations needed to correct all the different positions of the robot achieved by each source of information. Moreover, the paper reports an experiment of localization based on the combination of measures arising from a probabilistic approach (based on Adaptive Monte Carlo Localization) and the robot odometry. The proposed approach improves the accuracy of the autonomous navigation by means of a dynamic choice of the best available measure at any moment.\",\"PeriodicalId\":213724,\"journal\":{\"name\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2017.8250092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

移动机器人的自定位一直是自主导航任务的一个重要方面。当机器人的传感器精度和准确度较低时,自定位的挑战变得复杂。本工作针对这一问题,利用软传感器范式寻找解决方案。在数据融合机制中涉及到关于机器人定位的各种信息源,以获得对移动机器人位置的更准确估计。对每个信息源的正确估计概率的统计考虑构成了移动机器人自定位软传感器的核心。软传感器还计算几何变换,以纠正每个信息源所实现的机器人的所有不同位置。此外,本文还报道了一个基于概率方法(基于自适应蒙特卡罗定位)和机器人里程计相结合的定位实验。该方法通过动态选择任意时刻的最佳可用度量来提高自主导航的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust mobile robot self-localization by soft sensor paradigm
The Mobile Robot Self-Localization is always a crucial aspect of the autonomous navigation task. The challenge of self-locating become complicated when the robot has sensors having low-level precision and accuracy. This work faces this aspect finding a solution by the using of the soft sensor paradigm. Various sources of information regarding the robot localisation are involved in a data fusion mechanism to get a more accurate estimation of the position of a mobile robot. Statistical considerations concerning the probability of a correct estimate for each source of information constitute the kernel of the soft sensor for the mobile robot self-localization. The soft sensor also computes the geometric transformations needed to correct all the different positions of the robot achieved by each source of information. Moreover, the paper reports an experiment of localization based on the combination of measures arising from a probabilistic approach (based on Adaptive Monte Carlo Localization) and the robot odometry. The proposed approach improves the accuracy of the autonomous navigation by means of a dynamic choice of the best available measure at any moment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twin-rotor MIMO system and its control using interval type-2 fuzzy logic Sit-to-stand and stand-to-sit crutch use for lower extremity powered exoskeletons Visual inspection system for smart manufacture of home appliances A novel clutch coupled nonholonomic wheeled mobile robot mechanism to mechanically minimize deduced reckoning error 3D object recognition from tactile data acquired at salient points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1