用级联分类器快速检测行人

Ning Zhang, Qixiang Ye, Jianbin Jiao
{"title":"用级联分类器快速检测行人","authors":"Ning Zhang, Qixiang Ye, Jianbin Jiao","doi":"10.1109/YCICT.2009.5382431","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for fast pedestrian detection in images/videos. Multi-scale orientated (MSO) features are proposed to represent coarse pedestrian contour, on which Adaboost classifiers are trained for pedestrian coarse location. In the fine detection, histogram of oriented gradient (HOG) features and SVM classifiers are employed to precisely classify pedestrians and non-pedestrians. The coarse-to-fine scheme can bring out not only a higher speed but also the elimination of smooth image regions that are prone to be falsely detection as positives by strong classifiers. The strong classifier SVM in the fine detection make the detection robust to variance of pedestrian pattern. Experiments validates the proposed method.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast pedestrain detection with cascade classifiers\",\"authors\":\"Ning Zhang, Qixiang Ye, Jianbin Jiao\",\"doi\":\"10.1109/YCICT.2009.5382431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for fast pedestrian detection in images/videos. Multi-scale orientated (MSO) features are proposed to represent coarse pedestrian contour, on which Adaboost classifiers are trained for pedestrian coarse location. In the fine detection, histogram of oriented gradient (HOG) features and SVM classifiers are employed to precisely classify pedestrians and non-pedestrians. The coarse-to-fine scheme can bring out not only a higher speed but also the elimination of smooth image regions that are prone to be falsely detection as positives by strong classifiers. The strong classifier SVM in the fine detection make the detection robust to variance of pedestrian pattern. Experiments validates the proposed method.\",\"PeriodicalId\":138803,\"journal\":{\"name\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YCICT.2009.5382431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于图像/视频的快速行人检测方法。提出了多尺度定向(MSO)特征来表示粗行人轮廓,并在此基础上训练Adaboost分类器进行行人粗定位。在精细检测中,采用HOG特征直方图和SVM分类器对行人和非行人进行精确分类。从粗到精方案不仅可以提高速度,而且可以消除容易被强分类器误检为阳性的平滑图像区域。在精细检测中采用强分类器SVM,使检测对行人模式的方差具有鲁棒性。实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast pedestrain detection with cascade classifiers
In this paper, we propose a method for fast pedestrian detection in images/videos. Multi-scale orientated (MSO) features are proposed to represent coarse pedestrian contour, on which Adaboost classifiers are trained for pedestrian coarse location. In the fine detection, histogram of oriented gradient (HOG) features and SVM classifiers are employed to precisely classify pedestrians and non-pedestrians. The coarse-to-fine scheme can bring out not only a higher speed but also the elimination of smooth image regions that are prone to be falsely detection as positives by strong classifiers. The strong classifier SVM in the fine detection make the detection robust to variance of pedestrian pattern. Experiments validates the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1