集成机器学习方法在移动威胁检测中的评价

Sanjay Kumar, A. Viinikainen, T. Hämäläinen
{"title":"集成机器学习方法在移动威胁检测中的评价","authors":"Sanjay Kumar, A. Viinikainen, T. Hämäläinen","doi":"10.23919/ICITST.2017.8356396","DOIUrl":null,"url":null,"abstract":"The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use tailored techniques to avoid detection by the traditional antivirus. The emerging need is to detect these threats by any flow-based network solution. Therefore, we propose and evaluate a network based model which uses ensemble Machine Learning (ML) methods in order to identify the mobile threats, by analyzing the network flows of the malware communication. The ensemble ML methods not only protect over-fitting of the model but also cope with the issues related to the changing behavior of the attackers. The focus of this study is on android based mobile malwares due to its popularity among users. We have used ensemble methods to combine output of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and Ridor. Based on the evaluation results, the proposed model was found efficient at detecting known and unknown threats with the accuracy of 98.2%.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Evaluation of ensemble machine learning methods in mobile threat detection\",\"authors\":\"Sanjay Kumar, A. Viinikainen, T. Hämäläinen\",\"doi\":\"10.23919/ICITST.2017.8356396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use tailored techniques to avoid detection by the traditional antivirus. The emerging need is to detect these threats by any flow-based network solution. Therefore, we propose and evaluate a network based model which uses ensemble Machine Learning (ML) methods in order to identify the mobile threats, by analyzing the network flows of the malware communication. The ensemble ML methods not only protect over-fitting of the model but also cope with the issues related to the changing behavior of the attackers. The focus of this study is on android based mobile malwares due to its popularity among users. We have used ensemble methods to combine output of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and Ridor. Based on the evaluation results, the proposed model was found efficient at detecting known and unknown threats with the accuracy of 98.2%.\",\"PeriodicalId\":440665,\"journal\":{\"name\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICITST.2017.8356396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

移动设备的快速增长趋势持续飙升,导致网络安全威胁大幅增加。最普遍的威胁包括勒索软件、银行恶意软件、付费短信诈骗。单独的黑客使用定制的技术来避免传统的反病毒软件的检测。新出现的需求是通过任何基于流的网络解决方案检测这些威胁。因此,我们提出并评估了一种基于网络的模型,该模型使用集成机器学习(ML)方法,通过分析恶意软件通信的网络流来识别移动威胁。集成ML方法不仅可以保护模型的过拟合,还可以处理与攻击者行为变化相关的问题。本研究的重点是基于android的移动恶意软件,因为它在用户中很受欢迎。我们使用集成方法将RF、PART、JRIP、J.48和Ridor等5种监督ML算法的输出组合在一起。评价结果表明,该模型对已知和未知威胁的检测准确率为98.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of ensemble machine learning methods in mobile threat detection
The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use tailored techniques to avoid detection by the traditional antivirus. The emerging need is to detect these threats by any flow-based network solution. Therefore, we propose and evaluate a network based model which uses ensemble Machine Learning (ML) methods in order to identify the mobile threats, by analyzing the network flows of the malware communication. The ensemble ML methods not only protect over-fitting of the model but also cope with the issues related to the changing behavior of the attackers. The focus of this study is on android based mobile malwares due to its popularity among users. We have used ensemble methods to combine output of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and Ridor. Based on the evaluation results, the proposed model was found efficient at detecting known and unknown threats with the accuracy of 98.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the cost of cyber security in smart business Towards comparing programming paradigms Towards a security baseline for IaaS-cloud back-ends in Industry 4.0 Enhancing security in the cloud: When traceability meets access control New keyed chaotic neural network hash function based on sponge construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1