P. Banerjee, Q. Hao, A. Biswas, A. Bhattacharjee, A. Acharyya
{"title":"磁场可调谐雪崩穿越时间装置中的雪崩噪声","authors":"P. Banerjee, Q. Hao, A. Biswas, A. Bhattacharjee, A. Acharyya","doi":"10.1109/ICCECE.2016.8009570","DOIUrl":null,"url":null,"abstract":"Influences of magnetic field on the noise performance of double-drift region (DDR) impact avalanche transit time (IMPATT) device based on Si designed to operate within W-band (75–110 GHz) have been studied in this paper. The reverse biased DDR IMPATT structure under transverse magnetic field can be regarded as magnetic field tunable avalanche transit time (MAGTATT) device. The simulation results show that both the noise spectral density and noise measure of the device increase significantly while the device is kept in transverse magnetic field. This degradation of the noise performance of the device enhances when the magnitude of the magnetic field is increased. Therefore, in order to achieve the magnetic field tuning of the RF properties of DDR IMPATTs as reported earlier by the authors, the noise performance of the source has to be sacrificed in fair extent.","PeriodicalId":414303,"journal":{"name":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"44 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Avalanche noise in magnetic field tunable avalanche transit time device\",\"authors\":\"P. Banerjee, Q. Hao, A. Biswas, A. Bhattacharjee, A. Acharyya\",\"doi\":\"10.1109/ICCECE.2016.8009570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influences of magnetic field on the noise performance of double-drift region (DDR) impact avalanche transit time (IMPATT) device based on Si designed to operate within W-band (75–110 GHz) have been studied in this paper. The reverse biased DDR IMPATT structure under transverse magnetic field can be regarded as magnetic field tunable avalanche transit time (MAGTATT) device. The simulation results show that both the noise spectral density and noise measure of the device increase significantly while the device is kept in transverse magnetic field. This degradation of the noise performance of the device enhances when the magnitude of the magnetic field is increased. Therefore, in order to achieve the magnetic field tuning of the RF properties of DDR IMPATTs as reported earlier by the authors, the noise performance of the source has to be sacrificed in fair extent.\",\"PeriodicalId\":414303,\"journal\":{\"name\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"44 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE.2016.8009570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE.2016.8009570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Avalanche noise in magnetic field tunable avalanche transit time device
Influences of magnetic field on the noise performance of double-drift region (DDR) impact avalanche transit time (IMPATT) device based on Si designed to operate within W-band (75–110 GHz) have been studied in this paper. The reverse biased DDR IMPATT structure under transverse magnetic field can be regarded as magnetic field tunable avalanche transit time (MAGTATT) device. The simulation results show that both the noise spectral density and noise measure of the device increase significantly while the device is kept in transverse magnetic field. This degradation of the noise performance of the device enhances when the magnitude of the magnetic field is increased. Therefore, in order to achieve the magnetic field tuning of the RF properties of DDR IMPATTs as reported earlier by the authors, the noise performance of the source has to be sacrificed in fair extent.