{"title":"基于电子振荡的单色伽马射线源","authors":"Hai Lin, Chengpu Liu, Chen Wang","doi":"10.5772/INTECHOPEN.82752","DOIUrl":null,"url":null,"abstract":"Production of artificial gamma-ray source usually is a conception belonging to the category of experimental nuclear physics. Nuclear physicists achieve this goal through utilizing/manipulating nucleons, such as proton and neutron. Low-energy electrons are often taken as “ by-products ” when preparing these nucleons by ion-izing atoms, molecules and solids, and high-energy electrons or β rays are taken as “ wastage ” generated in nuclear reaction. Utilization of those “ by-products ” has not won sufficient attention from the nuclear physics community. In this chapter, we point out a potential, valuable utilization of those “ by-products. ” Based on a universal principle of achieving powerful mono-color radiation source, we propose how to set up an efficient powerful electron-based gamma-ray source through available solid-state components/elements. Larger charge-to-mass ratio of an electron warrants the advantage of electron-based gamma-ray source over its nucleon-based counterpart. Our technique offers a more efficient way of manipulating nuclear matter through its characteristic EM stimulus. It can warrant sufficient dose/brightness/intensity and hence an efficient manipulation of nuclear matter. Especially, the manipulation of a nucleus is not at the cost of destroying many nuclei to generate a desired tool, that is, gamma ray with sufficient intensity, for achieving this goal. This fundamentally warrants a practical manipulation of more nuclei at desirable number.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Oscillation-Based Mono-Color Gamma-Ray Source\",\"authors\":\"Hai Lin, Chengpu Liu, Chen Wang\",\"doi\":\"10.5772/INTECHOPEN.82752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production of artificial gamma-ray source usually is a conception belonging to the category of experimental nuclear physics. Nuclear physicists achieve this goal through utilizing/manipulating nucleons, such as proton and neutron. Low-energy electrons are often taken as “ by-products ” when preparing these nucleons by ion-izing atoms, molecules and solids, and high-energy electrons or β rays are taken as “ wastage ” generated in nuclear reaction. Utilization of those “ by-products ” has not won sufficient attention from the nuclear physics community. In this chapter, we point out a potential, valuable utilization of those “ by-products. ” Based on a universal principle of achieving powerful mono-color radiation source, we propose how to set up an efficient powerful electron-based gamma-ray source through available solid-state components/elements. Larger charge-to-mass ratio of an electron warrants the advantage of electron-based gamma-ray source over its nucleon-based counterpart. Our technique offers a more efficient way of manipulating nuclear matter through its characteristic EM stimulus. It can warrant sufficient dose/brightness/intensity and hence an efficient manipulation of nuclear matter. Especially, the manipulation of a nucleus is not at the cost of destroying many nuclei to generate a desired tool, that is, gamma ray with sufficient intensity, for achieving this goal. This fundamentally warrants a practical manipulation of more nuclei at desirable number.\",\"PeriodicalId\":159488,\"journal\":{\"name\":\"Use of Gamma Radiation Techniques in Peaceful Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Use of Gamma Radiation Techniques in Peaceful Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Use of Gamma Radiation Techniques in Peaceful Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electron Oscillation-Based Mono-Color Gamma-Ray Source
Production of artificial gamma-ray source usually is a conception belonging to the category of experimental nuclear physics. Nuclear physicists achieve this goal through utilizing/manipulating nucleons, such as proton and neutron. Low-energy electrons are often taken as “ by-products ” when preparing these nucleons by ion-izing atoms, molecules and solids, and high-energy electrons or β rays are taken as “ wastage ” generated in nuclear reaction. Utilization of those “ by-products ” has not won sufficient attention from the nuclear physics community. In this chapter, we point out a potential, valuable utilization of those “ by-products. ” Based on a universal principle of achieving powerful mono-color radiation source, we propose how to set up an efficient powerful electron-based gamma-ray source through available solid-state components/elements. Larger charge-to-mass ratio of an electron warrants the advantage of electron-based gamma-ray source over its nucleon-based counterpart. Our technique offers a more efficient way of manipulating nuclear matter through its characteristic EM stimulus. It can warrant sufficient dose/brightness/intensity and hence an efficient manipulation of nuclear matter. Especially, the manipulation of a nucleus is not at the cost of destroying many nuclei to generate a desired tool, that is, gamma ray with sufficient intensity, for achieving this goal. This fundamentally warrants a practical manipulation of more nuclei at desirable number.