Pub Date : 2019-08-26DOI: 10.5772/intechopen.85502
Hasna Albandar
This basic modes of radioactive decay review “ Gamma Rays ” reviews some topics related to radiation, its classification and importance. In general, gamma rays interfere with our life, so we need to comprehend radiation as fact around us all the time and all the time. We live in a naturally radioactive world, but to what extent do physicians, nurses, and medical technicians, who may have to deal with urgent cases of a radiation, know about it? This chapter will address what radiation is and what is its role. This chapter will guide us toward the knowledge of ionizing radiation and its certain forms such as alpha particles, beta particles, gamma rays, and X-rays. as well as it will review on radioactive decay (nuclear decay) as well as help us learn about radioactivity and radiation, in addition to the types of decays, which are divided into beta decay, gamma decay, electron capture, positron decay, and alpha decay. This chapter will focus on radioactive decay, the activity and units of radioactive activity, and half-life of it. The last part of this chapter discusses attenuation as the reduction in the intensity of gamma ray or X-ray beam. The most important subtitles that are scattered from attenuation are HVL mean free path, the linear attenuation coefficient, pair production, and photoelectric scattering.
{"title":"Basic Modes of Radioactive Decay","authors":"Hasna Albandar","doi":"10.5772/intechopen.85502","DOIUrl":"https://doi.org/10.5772/intechopen.85502","url":null,"abstract":"This basic modes of radioactive decay review “ Gamma Rays ” reviews some topics related to radiation, its classification and importance. In general, gamma rays interfere with our life, so we need to comprehend radiation as fact around us all the time and all the time. We live in a naturally radioactive world, but to what extent do physicians, nurses, and medical technicians, who may have to deal with urgent cases of a radiation, know about it? This chapter will address what radiation is and what is its role. This chapter will guide us toward the knowledge of ionizing radiation and its certain forms such as alpha particles, beta particles, gamma rays, and X-rays. as well as it will review on radioactive decay (nuclear decay) as well as help us learn about radioactivity and radiation, in addition to the types of decays, which are divided into beta decay, gamma decay, electron capture, positron decay, and alpha decay. This chapter will focus on radioactive decay, the activity and units of radioactive activity, and half-life of it. The last part of this chapter discusses attenuation as the reduction in the intensity of gamma ray or X-ray beam. The most important subtitles that are scattered from attenuation are HVL mean free path, the linear attenuation coefficient, pair production, and photoelectric scattering.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126434623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-09DOI: 10.5772/INTECHOPEN.85462
E. Cardoso, D. F. Parra, S. Scagliusi, R. M. Sales, Fernando Caviquioli, A. B. Lugão
Foamed polymers are future materials, considered “green materials” due to their properties with very low consumption of raw materials; they can be used to ameliorate appearance of structures besides contributing for thermal and acoustic insulation. Nevertheless, waste disposal has generated about 20–30% of total of solid volume in landfills besides prejudicing flora and fauna by uncontrolled disposal. The development of biodegradable polymers aims to solve this problem, considering that in 2012, bio-plastics market was evaluated in 1.4 million tons produced and in 2017 attained 6.2 million tons. Biodegradable polymers as poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are thermoplastics which can be processed using the most conventional polymer processing methods. PLA is high in strength and modulus but brittle, while PBAT is flexible and tough. In order to reduce interfacial tension exhibited by PLA/PBAT blends, it was used as compatibilizing agent 5 phr of PLA previously gamma-radiated at 150 kGy. Ionizing radiation induces compatibilization by free radicals, improving the dispersion and adhesion of blend phases, without using chemical additives and at room temperature. As a reinforcement agent, calcium carbonate from avian eggshell waste was used, at 10 ph of micro particles, 125 μm. Admixtures were further processed in a singlescrew extruder, using CO2 as physical blowing agent (PBA). Property investigations were performed by DSC, TGA, XRD, SEM, FTIR, and mechanical essays.
泡沫聚合物是未来的材料,被认为是“绿色材料”,因为它们的原材料消耗非常低;它们除了有助于隔热和隔音外,还可以用来改善结构的外观。然而,废物处置所产生的固体体积约占堆填区固体总量的20-30%,此外,由于废物处置不受控制,还会损害动植物群。生物降解聚合物的发展旨在解决这一问题,考虑到2012年生物塑料市场的产量评估为140万吨,2017年达到620万吨。可生物降解的聚合物如聚乳酸(PLA)和聚己二酸丁二酯(PBAT)是热塑性塑料,可以用最传统的聚合物加工方法进行加工。PLA强度和模量高,但脆性,而PBAT具有柔韧性和韧性。为了降低PLA/PBAT共混物所表现出的界面张力,在150 kGy的γ辐射下,将其作为PLA的增容剂5phr。电离辐射诱导自由基相容,改善共混相的分散性和附着力,不使用化学添加剂,在室温下。以鸡壳渣碳酸钙为补强剂,粒径为125 μm,粒径为10 ph。以CO2作为物理发泡剂(PBA),在单螺杆挤出机中进一步加工外加剂。通过DSC, TGA, XRD, SEM, FTIR和力学分析进行了性能研究。
{"title":"Study of Bio-Based Foams Prepared from PBAT/PLA Reinforced with Bio-Calcium Carbonate and Compatibilized with Gamma Radiation","authors":"E. Cardoso, D. F. Parra, S. Scagliusi, R. M. Sales, Fernando Caviquioli, A. B. Lugão","doi":"10.5772/INTECHOPEN.85462","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85462","url":null,"abstract":"Foamed polymers are future materials, considered “green materials” due to their properties with very low consumption of raw materials; they can be used to ameliorate appearance of structures besides contributing for thermal and acoustic insulation. Nevertheless, waste disposal has generated about 20–30% of total of solid volume in landfills besides prejudicing flora and fauna by uncontrolled disposal. The development of biodegradable polymers aims to solve this problem, considering that in 2012, bio-plastics market was evaluated in 1.4 million tons produced and in 2017 attained 6.2 million tons. Biodegradable polymers as poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are thermoplastics which can be processed using the most conventional polymer processing methods. PLA is high in strength and modulus but brittle, while PBAT is flexible and tough. In order to reduce interfacial tension exhibited by PLA/PBAT blends, it was used as compatibilizing agent 5 phr of PLA previously gamma-radiated at 150 kGy. Ionizing radiation induces compatibilization by free radicals, improving the dispersion and adhesion of blend phases, without using chemical additives and at room temperature. As a reinforcement agent, calcium carbonate from avian eggshell waste was used, at 10 ph of micro particles, 125 μm. Admixtures were further processed in a singlescrew extruder, using CO2 as physical blowing agent (PBA). Property investigations were performed by DSC, TGA, XRD, SEM, FTIR, and mechanical essays.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116179485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-23DOI: 10.5772/INTECHOPEN.86779
C. C. Busby
The absorption of gamma rays is roughly proportional to the fifth power of the atomic number of an element. This immediately raises the issue of tissue ionisation enhancement effects from photoelectron production by elements of high atomic number incorporated into living tissue. The issue was raised in the 1950s in relation to calcium in the bone but has received little attention since then. New results, derived from mathematical modelling carried out at the University of Ulster, of photoemission from nanoparticles of gold and uranium are presented. These show that significant ionisation enhancement effects can occur when incorporated particles of high atomic number are exposed to natural background gamma radiation, effects which increase sharply at the lower energy end of the spectrum, around 150 keV. The effects must also occur for molecular species. The general problem is discussed, with reference to the literature, and approximate enhancement factors are derived for the effect. The implications for the evolutionary selection of elements by life are explored.
{"title":"The Secondary Photoelectron Effect: Gamma Ray Ionisation Enhancement in Tissues from High Atomic Number Elements","authors":"C. C. Busby","doi":"10.5772/INTECHOPEN.86779","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86779","url":null,"abstract":"The absorption of gamma rays is roughly proportional to the fifth power of the atomic number of an element. This immediately raises the issue of tissue ionisation enhancement effects from photoelectron production by elements of high atomic number incorporated into living tissue. The issue was raised in the 1950s in relation to calcium in the bone but has received little attention since then. New results, derived from mathematical modelling carried out at the University of Ulster, of photoemission from nanoparticles of gold and uranium are presented. These show that significant ionisation enhancement effects can occur when incorporated particles of high atomic number are exposed to natural background gamma radiation, effects which increase sharply at the lower energy end of the spectrum, around 150 keV. The effects must also occur for molecular species. The general problem is discussed, with reference to the literature, and approximate enhancement factors are derived for the effect. The implications for the evolutionary selection of elements by life are explored.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127881995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-26DOI: 10.5772/INTECHOPEN.85503
H. Erramli, J. E. Asri
Gamma rays are high frequency electromagnetic radiation and therefore carry a lot of energy. They pass through most types of materials. Only an absorber such as a lead block or a thick concrete block can stop their transmission. In many alpha and beta transitions, the residual nucleus is formed in an excited state. The nucleus can lose its excitation energy and move to a “ fundamental level ” in several ways. (a) The most common transition is the emission of electromagnetic radiation, called gamma radiation. Very often the de-excitation occurs not directly between the highest level of the nucleus and its basic level, but by “ cascades ” corresponding to intermediate energies. (b) The gamma emission can be accompanied or replaced by the electron emission so-called “ internal conversion ” , where the energy excess is transmitted to an electron in the K, L or M shell. (c) Finally, if the available energy is greater than 2m e c 2 = 1022 keV, the excited nucleus can create a pair (e + , e (cid:1) ). The excess energy appears as a kinetic form. This internal materialization process is very rare. In this chapter we are presenting two applications of gamma rays: On the one hand, TL dosimeters and field gamma dosimetry are studied, a careful study of the correcting factors linked to the environmental and experimental conditions is performed. On the other hand, we are presenting a calculation method for controlling neutron activation analysis (NAA) experiments. This method consists of simulating the process of interaction of gamma rays induced by irradiation of various samples.
伽马射线是高频电磁辐射,因此携带大量能量。它们能穿过大多数类型的物质。只有像铅块或厚混凝土块这样的减震器才能阻止它们的传播。在许多α和β跃迁中,残核形成于激发态。原子核可以通过几种方式失去其激发能并移动到“基本能级”。(a)最常见的过渡是电磁辐射的发射,称为伽马辐射。通常,去激发不是直接发生在原子核的最高能级和它的基本能级之间,而是通过与中间能量相对应的“级联”发生的。(b)伽马发射可以伴随或被所谓的“内部转换”的电子发射所取代,在这种转换中,多余的能量传递给K、L或M壳层的电子。(c)最后,当可用能量大于2m时,c 2 = 1022 keV,被激发的原子核可以产生一对(e +, e (cid:1))。多余的能量以动能形式出现。这种内部物化过程是非常罕见的。在本章中,我们介绍了伽马射线的两种应用:一方面,研究了TL剂量计和现场伽马剂量法,并对与环境和实验条件有关的校正因素进行了仔细的研究。另一方面,我们提出了控制中子活化分析(NAA)实验的计算方法。该方法模拟了不同样品辐照后产生的伽马射线相互作用过程。
{"title":"Gamma Rays: Applications in Environmental Gamma Dosimetry and Determination Samples Gamma-Activities Induced by Neutrons","authors":"H. Erramli, J. E. Asri","doi":"10.5772/INTECHOPEN.85503","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85503","url":null,"abstract":"Gamma rays are high frequency electromagnetic radiation and therefore carry a lot of energy. They pass through most types of materials. Only an absorber such as a lead block or a thick concrete block can stop their transmission. In many alpha and beta transitions, the residual nucleus is formed in an excited state. The nucleus can lose its excitation energy and move to a “ fundamental level ” in several ways. (a) The most common transition is the emission of electromagnetic radiation, called gamma radiation. Very often the de-excitation occurs not directly between the highest level of the nucleus and its basic level, but by “ cascades ” corresponding to intermediate energies. (b) The gamma emission can be accompanied or replaced by the electron emission so-called “ internal conversion ” , where the energy excess is transmitted to an electron in the K, L or M shell. (c) Finally, if the available energy is greater than 2m e c 2 = 1022 keV, the excited nucleus can create a pair (e + , e (cid:1) ). The excess energy appears as a kinetic form. This internal materialization process is very rare. In this chapter we are presenting two applications of gamma rays: On the one hand, TL dosimeters and field gamma dosimetry are studied, a careful study of the correcting factors linked to the environmental and experimental conditions is performed. On the other hand, we are presenting a calculation method for controlling neutron activation analysis (NAA) experiments. This method consists of simulating the process of interaction of gamma rays induced by irradiation of various samples.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122981455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-18DOI: 10.5772/INTECHOPEN.82635
N. Kamyshanchenko, V. V. Krasil’nikov, A. Parkhomenko, V. N. Robuk
The classification of physical models of plastic deformation localization phenomena in the temperature range including the low-temperature radiation embrittlement effect is done. The new approach for the dislocation channeling mechanism description considering the collective behavior of dislocations and their interaction with radiation defects is proposed. The dislocation collective behavior model in materials irradiated, for example, by reactor radiation including neutron and accompanying gamma radiation is proposed on the basis of the evolution equation for dislocation density taking into account Burgers type nonlinearity. It is shown that the localized structures such as Danilov-Zuev ’ s relaxation waves can be described. The possibility of localization effects (embrittlement) decreasing by the plastic deformation microlevel switching-on is demonstrated in relation with the thermal activated processes. The model describing dose dependence of uniform elongation of irradiated materials is constructed. This model is in good agreement with the experimental data of low-activated alloy based on chromium under ( е , γ ) — beam radiation.
{"title":"Modeling Plastic Deformation in Irradiated Materials","authors":"N. Kamyshanchenko, V. V. Krasil’nikov, A. Parkhomenko, V. N. Robuk","doi":"10.5772/INTECHOPEN.82635","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82635","url":null,"abstract":"The classification of physical models of plastic deformation localization phenomena in the temperature range including the low-temperature radiation embrittlement effect is done. The new approach for the dislocation channeling mechanism description considering the collective behavior of dislocations and their interaction with radiation defects is proposed. The dislocation collective behavior model in materials irradiated, for example, by reactor radiation including neutron and accompanying gamma radiation is proposed on the basis of the evolution equation for dislocation density taking into account Burgers type nonlinearity. It is shown that the localized structures such as Danilov-Zuev ’ s relaxation waves can be described. The possibility of localization effects (embrittlement) decreasing by the plastic deformation microlevel switching-on is demonstrated in relation with the thermal activated processes. The model describing dose dependence of uniform elongation of irradiated materials is constructed. This model is in good agreement with the experimental data of low-activated alloy based on chromium under ( е , γ ) — beam radiation.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115078056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01DOI: 10.5772/INTECHOPEN.82798
M. Kazemeini, J. Vargas, A. Barzilov, W. Yim
Gamma ray measurements involved in monitoring technologies of field condi-tions are of vital importance for environmental safety and radiation protection. This chapter addresses the method of cooperative gamma sensing using multiple unmanned aerial systems. Section 1 provides an introduction. The design of semiconductor and scintillation gamma ray sensors integrated into aerial robotic platforms is discussed in Section 2, along with the fusion of time-stamped radiation data with position information using the real-time kinematic positioning technique. Section 3 addresses the multirobot contour mapping of radiation fields. Computer simulation of radiation contour mapping is discussed in Section 4. Experimental verification of the contour mapping and source-seeking algorithm is described in Section 5. Section 6 summarizes results of the project.
{"title":"Gamma Ray Measurements Using Unmanned Aerial Systems","authors":"M. Kazemeini, J. Vargas, A. Barzilov, W. Yim","doi":"10.5772/INTECHOPEN.82798","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82798","url":null,"abstract":"Gamma ray measurements involved in monitoring technologies of field condi-tions are of vital importance for environmental safety and radiation protection. This chapter addresses the method of cooperative gamma sensing using multiple unmanned aerial systems. Section 1 provides an introduction. The design of semiconductor and scintillation gamma ray sensors integrated into aerial robotic platforms is discussed in Section 2, along with the fusion of time-stamped radiation data with position information using the real-time kinematic positioning technique. Section 3 addresses the multirobot contour mapping of radiation fields. Computer simulation of radiation contour mapping is discussed in Section 4. Experimental verification of the contour mapping and source-seeking algorithm is described in Section 5. Section 6 summarizes results of the project.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"48 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114006308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-27DOI: 10.5772/INTECHOPEN.83721
Lubna A. Al-Asadi
This chapter deals with gamma background radiation that is exposed to two major natural sources: normal sources that are earthly gamma rays and astronomical rays. Earthbound gamma rays from radionuclide elements such as thorium, potassium, and uranium. Also, in building and enhancing materials such as medical plants, building purposes, some vegetables and fruits commonly used in markets and soil. The measurements of gamma background radiation differ according to the purpose. So, there are many instruments used such as HPGe detector, NaI (TI) detector, CR-39, a dosimeter, and SSNDT detector. This research will explain in detail the studies and the mechanism for each detector and how it works and the application (practical) studies for each one. The purpose of calculating gamma background radiation is to be in the safe side for human being according to the international union specified with a standard limitation of world average value or with a specific value ranged (standard values) according to the case study in medical, food, or building materials.
{"title":"Gamma Background Radiations and Measurements with Applications","authors":"Lubna A. Al-Asadi","doi":"10.5772/INTECHOPEN.83721","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83721","url":null,"abstract":"This chapter deals with gamma background radiation that is exposed to two major natural sources: normal sources that are earthly gamma rays and astronomical rays. Earthbound gamma rays from radionuclide elements such as thorium, potassium, and uranium. Also, in building and enhancing materials such as medical plants, building purposes, some vegetables and fruits commonly used in markets and soil. The measurements of gamma background radiation differ according to the purpose. So, there are many instruments used such as HPGe detector, NaI (TI) detector, CR-39, a dosimeter, and SSNDT detector. This research will explain in detail the studies and the mechanism for each detector and how it works and the application (practical) studies for each one. The purpose of calculating gamma background radiation is to be in the safe side for human being according to the international union specified with a standard limitation of world average value or with a specific value ranged (standard values) according to the case study in medical, food, or building materials.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116792486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-15DOI: 10.5772/INTECHOPEN.82864
Nicolas Fourches, M. Zielińska, G. Charles
High purity germanium remains the material of choice for the detection of photons in the range of MeV or higher, down to the hard X-ray range. Since the operation of HPGe-based detectors is possible only at or below the liquid nitrogen temperature, their advantage is mainly the resolution, which matches the Fano factor if appropriate cooled electronic readout is used. We focus here on present-day applications of HPGe detectors, which are now broader than ever despite the recent development of room-temperature photon detectors based on binary compounds. We present in particular dark matter detectors and γ -ray trackers as examples of the recent applications of HPGe as a detecting medium. More generally, we discuss the future of γ -ray detectors and the role that the semiconductor detectors will keep with respect to alternative detection materials. This chapter is an introduction to this general topic, and the reader is encouraged to refer to research and review articles on this subject published in the past or recently.
{"title":"High Purity Germanium: From Gamma-Ray Detection to Dark Matter Subterranean Detectors","authors":"Nicolas Fourches, M. Zielińska, G. Charles","doi":"10.5772/INTECHOPEN.82864","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82864","url":null,"abstract":"High purity germanium remains the material of choice for the detection of photons in the range of MeV or higher, down to the hard X-ray range. Since the operation of HPGe-based detectors is possible only at or below the liquid nitrogen temperature, their advantage is mainly the resolution, which matches the Fano factor if appropriate cooled electronic readout is used. We focus here on present-day applications of HPGe detectors, which are now broader than ever despite the recent development of room-temperature photon detectors based on binary compounds. We present in particular dark matter detectors and γ -ray trackers as examples of the recent applications of HPGe as a detecting medium. More generally, we discuss the future of γ -ray detectors and the role that the semiconductor detectors will keep with respect to alternative detection materials. This chapter is an introduction to this general topic, and the reader is encouraged to refer to research and review articles on this subject published in the past or recently.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121484877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-18DOI: 10.5772/INTECHOPEN.82385
Thongchai Koobkokkruad, P. Wanichananan, C. Kirdmanee, W. De-Eknamkul
Artemisinin is an anti-malarial sesquiterpene lactone isolated from Artemisia annua L., a traditional Chinese herb of the family Asteraceae. The plant contains relatively low artemisinin content, ranging from 0.01 to 0.8% of the plant dry weight, depending on the geographical origin, seasonal, and somatic variations. Ionizing radiation has been recognized as a powerful technique for plant improvement, especially in crop plants. This technique creates genetic variability in plants, which can be screened for desirable characteristics. Very little is known about the effect of gamma irradiation on the potential increase of artemisinin production in A. annua . In this study, 130 shoot tips excised from the population of in vitro A. annua plantlets (with an average leaf artemisinin content of 0.18 ± 0.09%) were exposed to 5 Gy 60 Co gamma irradiation and subsequently transferred to a suitable medium for in vitro development of plantlets. The resulting 90 stable survived after four passages appeared to have a wide variation of artemisinin content, ranging from 0.02 to 0.68% of dry weight. All the viable plantlets were then transferred from the in vitro cultures to ex vitro conditions both in a greenhouse and an open field. A significant correlation was observed between artemisinin content among individual pairs of the vitro plantlets and ex vitro mature plants, with the correlation coefficient (R 2 ) values of 0.915 for the greenhouse plants and 0.797 for the open field plants. Among these, the highest artemisinin-containing plant appeared to accumulate 0.84% artemisinin of dry weight in the open field, which is almost five times higher than the original plants. These results suggest that gamma irradiation with 5-Gy dose can produce viable variants of A. annua that can maintain the biosynthetic capability of artemisinin throughout the in vitro-ex vitro transfer and development of the first generation of
{"title":"Gamma Irradiation Causes Variation and Stability of Artemisinin Content in Artemisia annua Plants","authors":"Thongchai Koobkokkruad, P. Wanichananan, C. Kirdmanee, W. De-Eknamkul","doi":"10.5772/INTECHOPEN.82385","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82385","url":null,"abstract":"Artemisinin is an anti-malarial sesquiterpene lactone isolated from Artemisia annua L., a traditional Chinese herb of the family Asteraceae. The plant contains relatively low artemisinin content, ranging from 0.01 to 0.8% of the plant dry weight, depending on the geographical origin, seasonal, and somatic variations. Ionizing radiation has been recognized as a powerful technique for plant improvement, especially in crop plants. This technique creates genetic variability in plants, which can be screened for desirable characteristics. Very little is known about the effect of gamma irradiation on the potential increase of artemisinin production in A. annua . In this study, 130 shoot tips excised from the population of in vitro A. annua plantlets (with an average leaf artemisinin content of 0.18 ± 0.09%) were exposed to 5 Gy 60 Co gamma irradiation and subsequently transferred to a suitable medium for in vitro development of plantlets. The resulting 90 stable survived after four passages appeared to have a wide variation of artemisinin content, ranging from 0.02 to 0.68% of dry weight. All the viable plantlets were then transferred from the in vitro cultures to ex vitro conditions both in a greenhouse and an open field. A significant correlation was observed between artemisinin content among individual pairs of the vitro plantlets and ex vitro mature plants, with the correlation coefficient (R 2 ) values of 0.915 for the greenhouse plants and 0.797 for the open field plants. Among these, the highest artemisinin-containing plant appeared to accumulate 0.84% artemisinin of dry weight in the open field, which is almost five times higher than the original plants. These results suggest that gamma irradiation with 5-Gy dose can produce viable variants of A. annua that can maintain the biosynthetic capability of artemisinin throughout the in vitro-ex vitro transfer and development of the first generation of","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114826178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-11DOI: 10.5772/INTECHOPEN.83371
Luka Rubinjoni, K. Karadžić, B. Loncar
Current knowledge on the impact of γ radiation on gas-filled surge arresters (GFSA) is presented. Miniaturization of electronic components has led to their increased vulnerability to overvoltage. The combination of ionizing radiation and voltage surges is present in both space exploration and military applications. Some of the commonly used overvoltage protection components (transient suppressor diodes and metal-oxide varistors) perform poorly under ionizing radiation. GFSA demon-strate improved performance under γ irradiation. Performance of GFSA was tested under neutron + γ radiation, considering the effects of induced radiation. The effects of γ radiation were tested on commercially available GFSA components and on the purpose-built GFSA model. The model was used to measure the prebreakdown current and breakdown voltage of different electrode materials (aluminum, steel, brass) under varying gas pressures, under DC and pulse currents. The improvement of the performance of GFSA due to external γ radiation, combined with other improve-ments in the design (hollow cathode), can enable the use of GFSA without internal radiation sources in environments where γ radiation is present.
{"title":"Influence of Gamma Radiation on Gas-Filled Surge Arresters","authors":"Luka Rubinjoni, K. Karadžić, B. Loncar","doi":"10.5772/INTECHOPEN.83371","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83371","url":null,"abstract":"Current knowledge on the impact of γ radiation on gas-filled surge arresters (GFSA) is presented. Miniaturization of electronic components has led to their increased vulnerability to overvoltage. The combination of ionizing radiation and voltage surges is present in both space exploration and military applications. Some of the commonly used overvoltage protection components (transient suppressor diodes and metal-oxide varistors) perform poorly under ionizing radiation. GFSA demon-strate improved performance under γ irradiation. Performance of GFSA was tested under neutron + γ radiation, considering the effects of induced radiation. The effects of γ radiation were tested on commercially available GFSA components and on the purpose-built GFSA model. The model was used to measure the prebreakdown current and breakdown voltage of different electrode materials (aluminum, steel, brass) under varying gas pressures, under DC and pulse currents. The improvement of the performance of GFSA due to external γ radiation, combined with other improve-ments in the design (hollow cathode), can enable the use of GFSA without internal radiation sources in environments where γ radiation is present.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130316490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}