环境遥测大数据搜索

Adelina Ochian, G. Suciu, O. Fratu, Victor Suciu
{"title":"环境遥测大数据搜索","authors":"Adelina Ochian, G. Suciu, O. Fratu, Victor Suciu","doi":"10.1109/BlackSeaCom.2014.6849035","DOIUrl":null,"url":null,"abstract":"This paper presents how Exalead CloudView is used to search for environmental parameters in big data. In particular, given an environmental application, we propose to leverage trivial and non-trivial connections between different sensor signals, in order to find patterns that are likely to provide innovative solutions to existing problems and to establish different data models. The aggregation of such data models will provide evidence of connections between different events and environmental responses to those triggers, faster and better than trivial mining sensors data. As a consequence, the software has a significant potential for matching environmental applications and challenges that are related in non-obvious ways.","PeriodicalId":427901,"journal":{"name":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Big data search for environmental telemetry\",\"authors\":\"Adelina Ochian, G. Suciu, O. Fratu, Victor Suciu\",\"doi\":\"10.1109/BlackSeaCom.2014.6849035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents how Exalead CloudView is used to search for environmental parameters in big data. In particular, given an environmental application, we propose to leverage trivial and non-trivial connections between different sensor signals, in order to find patterns that are likely to provide innovative solutions to existing problems and to establish different data models. The aggregation of such data models will provide evidence of connections between different events and environmental responses to those triggers, faster and better than trivial mining sensors data. As a consequence, the software has a significant potential for matching environmental applications and challenges that are related in non-obvious ways.\",\"PeriodicalId\":427901,\"journal\":{\"name\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BlackSeaCom.2014.6849035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2014.6849035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文介绍了如何使用Exalead CloudView在大数据中搜索环境参数。特别是,对于环境应用,我们建议利用不同传感器信号之间的琐碎和非琐碎连接,以便找到可能为现有问题提供创新解决方案的模式,并建立不同的数据模型。这些数据模型的聚合将提供不同事件之间联系的证据以及对这些触发器的环境响应,比琐碎的挖掘传感器数据更快更好。因此,该软件在匹配环境应用和挑战方面具有巨大的潜力,这些应用和挑战以不明显的方式相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data search for environmental telemetry
This paper presents how Exalead CloudView is used to search for environmental parameters in big data. In particular, given an environmental application, we propose to leverage trivial and non-trivial connections between different sensor signals, in order to find patterns that are likely to provide innovative solutions to existing problems and to establish different data models. The aggregation of such data models will provide evidence of connections between different events and environmental responses to those triggers, faster and better than trivial mining sensors data. As a consequence, the software has a significant potential for matching environmental applications and challenges that are related in non-obvious ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of ITU threshold values on geostationary orbit efficiency in the Ku band Asymptotic and finite-length performance of irregular spatially-coupled codes Efficiency estimation of using MIMO technology in multi-hop networks On adding the social dimension to the Internet of Vehicles: Friendship and middleware A high throughput K-best detector on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1