三维空间机器人辅助上肢本体感觉训练

Bulmaro A. Valdés, Mahta Khoshnam, J. Neva, C. Menon
{"title":"三维空间机器人辅助上肢本体感觉训练","authors":"Bulmaro A. Valdés, Mahta Khoshnam, J. Neva, C. Menon","doi":"10.1109/ICORR.2019.8779529","DOIUrl":null,"url":null,"abstract":"Proprioception, the ability to sense body position and limb movements in space without visual feedback, is one of the key factors in controlling body movements and performing activities of daily living. However, this capability might be affected after neural injuries such as stroke. Robotic platforms can be used to monitor and promote arm movements and, therefore, can assist in developing rehabilitation protocols that aim to improve proprioception through repetitive reaching motions without vision. The objective of this paper is to investigate if a robotic training protocol improves the end-position reaching proprioceptive sense in three-dimensional (3D) space. As an initial step towards clinical application, a robotic platform was employed to train the end-position proprioceptive sense in six healthy participants. During the training phase, volunteers used their dominant hand to reach without vision to two different targets in 3D space. Positions of these targets were carefully chosen to create a hand movement pattern similar to that used when self-feeding, which is an important activity of daily living. At the end of each training trial, participants were provided with visual feedback to help them move their hands to the exact locations confirmed through haptic feedback. Their performance was evaluated before and after the training in an assessment phase during which participants were asked to move from the start position to the same two targets as well as an additional third one without any visual or haptic feedback. The results from this study show significant improvements in overall reaching accuracy and trajectory smoothness, demonstrated by 41% decrease in the average end-position error and 13% reduction in the average index of curvature after the training. This research suggests the potential of designing robotic rehabilitation protocols for improving 3D proprioception.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"649 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space\",\"authors\":\"Bulmaro A. Valdés, Mahta Khoshnam, J. Neva, C. Menon\",\"doi\":\"10.1109/ICORR.2019.8779529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proprioception, the ability to sense body position and limb movements in space without visual feedback, is one of the key factors in controlling body movements and performing activities of daily living. However, this capability might be affected after neural injuries such as stroke. Robotic platforms can be used to monitor and promote arm movements and, therefore, can assist in developing rehabilitation protocols that aim to improve proprioception through repetitive reaching motions without vision. The objective of this paper is to investigate if a robotic training protocol improves the end-position reaching proprioceptive sense in three-dimensional (3D) space. As an initial step towards clinical application, a robotic platform was employed to train the end-position proprioceptive sense in six healthy participants. During the training phase, volunteers used their dominant hand to reach without vision to two different targets in 3D space. Positions of these targets were carefully chosen to create a hand movement pattern similar to that used when self-feeding, which is an important activity of daily living. At the end of each training trial, participants were provided with visual feedback to help them move their hands to the exact locations confirmed through haptic feedback. Their performance was evaluated before and after the training in an assessment phase during which participants were asked to move from the start position to the same two targets as well as an additional third one without any visual or haptic feedback. The results from this study show significant improvements in overall reaching accuracy and trajectory smoothness, demonstrated by 41% decrease in the average end-position error and 13% reduction in the average index of curvature after the training. This research suggests the potential of designing robotic rehabilitation protocols for improving 3D proprioception.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"649 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本体感觉是在没有视觉反馈的情况下感知身体位置和肢体运动的能力,是控制身体运动和进行日常生活活动的关键因素之一。然而,这种能力可能会在神经损伤(如中风)后受到影响。机器人平台可用于监测和促进手臂运动,因此,可以帮助制定康复方案,旨在通过无视觉的重复性伸展运动来改善本体感觉。本文的目的是研究机器人训练方案是否能提高机器人在三维空间中到达本体感觉的末端位置。作为临床应用的第一步,使用机器人平台对6名健康参与者进行末端位置本体感觉的训练。在训练阶段,志愿者在没有视觉的情况下,用惯用手去触摸三维空间中的两个不同目标。这些目标的位置经过精心选择,以创造类似于自我进食时使用的手部运动模式,这是日常生活的重要活动。在每次训练试验结束时,参与者都会获得视觉反馈,以帮助他们将手移动到通过触觉反馈确定的准确位置。在训练前后的一个评估阶段,参与者被要求从起始位置移动到相同的两个目标,以及在没有任何视觉或触觉反馈的情况下移动到另外一个目标。研究结果表明,经过训练后,平均末端位置误差降低41%,平均曲率指数降低13%,整体到达精度和轨迹平滑度均有显著提高。这项研究表明,设计机器人康复方案的潜力,以提高3D本体感觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space
Proprioception, the ability to sense body position and limb movements in space without visual feedback, is one of the key factors in controlling body movements and performing activities of daily living. However, this capability might be affected after neural injuries such as stroke. Robotic platforms can be used to monitor and promote arm movements and, therefore, can assist in developing rehabilitation protocols that aim to improve proprioception through repetitive reaching motions without vision. The objective of this paper is to investigate if a robotic training protocol improves the end-position reaching proprioceptive sense in three-dimensional (3D) space. As an initial step towards clinical application, a robotic platform was employed to train the end-position proprioceptive sense in six healthy participants. During the training phase, volunteers used their dominant hand to reach without vision to two different targets in 3D space. Positions of these targets were carefully chosen to create a hand movement pattern similar to that used when self-feeding, which is an important activity of daily living. At the end of each training trial, participants were provided with visual feedback to help them move their hands to the exact locations confirmed through haptic feedback. Their performance was evaluated before and after the training in an assessment phase during which participants were asked to move from the start position to the same two targets as well as an additional third one without any visual or haptic feedback. The results from this study show significant improvements in overall reaching accuracy and trajectory smoothness, demonstrated by 41% decrease in the average end-position error and 13% reduction in the average index of curvature after the training. This research suggests the potential of designing robotic rehabilitation protocols for improving 3D proprioception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton Pattern recognition and direct control home use of a multi-articulating hand prosthesis Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification Texture Discrimination using a Soft Biomimetic Finger for Prosthetic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1