Mohammed Farouk Nakmouche, H. Taher, D. Fawzy, A. Allam
{"title":"基于h缝DGS的宽带基板集成波导带通滤波器的研制","authors":"Mohammed Farouk Nakmouche, H. Taher, D. Fawzy, A. Allam","doi":"10.1109/CAMA47423.2019.8959664","DOIUrl":null,"url":null,"abstract":"In the current work, a new Wideband Substrate Integrated Waveguide Bandpass Filter (SIW-BPF) is presented. The target is to allow vertical roaming between the X and Ku band applications. As a first step, we performed a parametric study of different etched slot geometries namely, H-Slotted, T-Slotted, and U-Slotted DGS in order to examine the effects of altering different geometrical parameters of the unit on its response. H-Slotted DGS shows the highest FBW with 82.89% on the average compared to other geometries. As a second step, the cell size and the numbers of the H-Slotted DGS were optimized with the use of finite element method with the following constraints taken into consideration: low cost fabrication, high Q-Factor, compact size and easy integration. One of the designs was chosen for fabrication to validate the designed circuit. The measured results show that our optimized filter achieves an insertion loss of 2.01 dB at 8.5 GHz, a return loss higher than 11 dB and fractional bandwidth of 90.87% for a single cell and a fractional bandwidth of 80.05% for multiple cells. The measured results are in good agreement with the simulated results.","PeriodicalId":170627,"journal":{"name":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"59 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Development of a Wideband Substrate Integrated Waveguide Bandpass Filter Using H-Slotted DGS\",\"authors\":\"Mohammed Farouk Nakmouche, H. Taher, D. Fawzy, A. Allam\",\"doi\":\"10.1109/CAMA47423.2019.8959664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, a new Wideband Substrate Integrated Waveguide Bandpass Filter (SIW-BPF) is presented. The target is to allow vertical roaming between the X and Ku band applications. As a first step, we performed a parametric study of different etched slot geometries namely, H-Slotted, T-Slotted, and U-Slotted DGS in order to examine the effects of altering different geometrical parameters of the unit on its response. H-Slotted DGS shows the highest FBW with 82.89% on the average compared to other geometries. As a second step, the cell size and the numbers of the H-Slotted DGS were optimized with the use of finite element method with the following constraints taken into consideration: low cost fabrication, high Q-Factor, compact size and easy integration. One of the designs was chosen for fabrication to validate the designed circuit. The measured results show that our optimized filter achieves an insertion loss of 2.01 dB at 8.5 GHz, a return loss higher than 11 dB and fractional bandwidth of 90.87% for a single cell and a fractional bandwidth of 80.05% for multiple cells. The measured results are in good agreement with the simulated results.\",\"PeriodicalId\":170627,\"journal\":{\"name\":\"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"volume\":\"59 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMA47423.2019.8959664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA47423.2019.8959664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Wideband Substrate Integrated Waveguide Bandpass Filter Using H-Slotted DGS
In the current work, a new Wideband Substrate Integrated Waveguide Bandpass Filter (SIW-BPF) is presented. The target is to allow vertical roaming between the X and Ku band applications. As a first step, we performed a parametric study of different etched slot geometries namely, H-Slotted, T-Slotted, and U-Slotted DGS in order to examine the effects of altering different geometrical parameters of the unit on its response. H-Slotted DGS shows the highest FBW with 82.89% on the average compared to other geometries. As a second step, the cell size and the numbers of the H-Slotted DGS were optimized with the use of finite element method with the following constraints taken into consideration: low cost fabrication, high Q-Factor, compact size and easy integration. One of the designs was chosen for fabrication to validate the designed circuit. The measured results show that our optimized filter achieves an insertion loss of 2.01 dB at 8.5 GHz, a return loss higher than 11 dB and fractional bandwidth of 90.87% for a single cell and a fractional bandwidth of 80.05% for multiple cells. The measured results are in good agreement with the simulated results.