嵌入式系统中AES-128算法的高效架构设计

Rupam Mondal, H. Ngo, James Shey, R. Rakvic, Owens Walker, Dane Brown
{"title":"嵌入式系统中AES-128算法的高效架构设计","authors":"Rupam Mondal, H. Ngo, James Shey, R. Rakvic, Owens Walker, Dane Brown","doi":"10.1145/3387902.3392624","DOIUrl":null,"url":null,"abstract":"Many applications make use of the edge devices in wireless sensor networks (WSNs), including video surveillance, traffic monitoring and enforcement, personal and health care, gaming, habitat monitoring, and industrial process control. However, these edge devices are resource-limited embedded systems that require a low-cost, low-power, and high-performance encryption/decryption solution to prevent attacks such as eavesdropping, message modification, and impersonation. This paper proposes a field-programmable gate array (FPGA) based design and implementation of the Advanced Encryption Standard (AES) algorithm for encryption and decryption using a parallel-pipeline architecture with a data forwarding mechanism that efficiently utilizes on-chip memory modules and massive parallel processing units to support a high throughput rate. Hardware designs that optimize the implementation of the AES algorithm are proposed to minimize resource allocation and maximize throughput. These designs are shown to outperform existing solutions in the literature. Additionally, a rapid prototype of a complete system-on-chip (SoC) solution that employs the proposed design on a configurable platform has been developed and proven to be suitable for real-time applications.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient architecture design for the AES-128 algorithm on embedded systems\",\"authors\":\"Rupam Mondal, H. Ngo, James Shey, R. Rakvic, Owens Walker, Dane Brown\",\"doi\":\"10.1145/3387902.3392624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications make use of the edge devices in wireless sensor networks (WSNs), including video surveillance, traffic monitoring and enforcement, personal and health care, gaming, habitat monitoring, and industrial process control. However, these edge devices are resource-limited embedded systems that require a low-cost, low-power, and high-performance encryption/decryption solution to prevent attacks such as eavesdropping, message modification, and impersonation. This paper proposes a field-programmable gate array (FPGA) based design and implementation of the Advanced Encryption Standard (AES) algorithm for encryption and decryption using a parallel-pipeline architecture with a data forwarding mechanism that efficiently utilizes on-chip memory modules and massive parallel processing units to support a high throughput rate. Hardware designs that optimize the implementation of the AES algorithm are proposed to minimize resource allocation and maximize throughput. These designs are shown to outperform existing solutions in the literature. Additionally, a rapid prototype of a complete system-on-chip (SoC) solution that employs the proposed design on a configurable platform has been developed and proven to be suitable for real-time applications.\",\"PeriodicalId\":155089,\"journal\":{\"name\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387902.3392624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3392624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多应用都在无线传感器网络(wsn)中使用边缘设备,包括视频监控、交通监控和执法、个人和医疗保健、游戏、栖息地监控和工业过程控制。然而,这些边缘设备是资源有限的嵌入式系统,需要低成本、低功耗和高性能的加密/解密解决方案来防止诸如窃听、消息修改和冒充等攻击。本文提出了一种基于现场可编程门阵列(FPGA)的高级加密标准(AES)加密和解密算法的设计和实现,采用并行管道架构和数据转发机制,有效地利用片上存储模块和大量并行处理单元来支持高吞吐量。提出了优化AES算法实现的硬件设计,以最小化资源分配和最大化吞吐量。这些设计在文献中被证明优于现有的解决方案。此外,一个完整的片上系统(SoC)解决方案的快速原型,在一个可配置的平台上采用了所提出的设计,并被证明适用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient architecture design for the AES-128 algorithm on embedded systems
Many applications make use of the edge devices in wireless sensor networks (WSNs), including video surveillance, traffic monitoring and enforcement, personal and health care, gaming, habitat monitoring, and industrial process control. However, these edge devices are resource-limited embedded systems that require a low-cost, low-power, and high-performance encryption/decryption solution to prevent attacks such as eavesdropping, message modification, and impersonation. This paper proposes a field-programmable gate array (FPGA) based design and implementation of the Advanced Encryption Standard (AES) algorithm for encryption and decryption using a parallel-pipeline architecture with a data forwarding mechanism that efficiently utilizes on-chip memory modules and massive parallel processing units to support a high throughput rate. Hardware designs that optimize the implementation of the AES algorithm are proposed to minimize resource allocation and maximize throughput. These designs are shown to outperform existing solutions in the literature. Additionally, a rapid prototype of a complete system-on-chip (SoC) solution that employs the proposed design on a configurable platform has been developed and proven to be suitable for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A critical view on moving target defense and its analogies Deffe Management of container-based genetic algorithm workloads over cloud infrastructure Automaton-based methodology for implementing optimization constraints for quantum annealing An efficient object detection framework with modified dense connections for small objects optimizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1