氮化镓堆叠电池在k波段功率应用的比较研究

Stela Furxhi, Simone De Marzi, R. Giofré, P. Colantonio
{"title":"氮化镓堆叠电池在k波段功率应用的比较研究","authors":"Stela Furxhi, Simone De Marzi, R. Giofré, P. Colantonio","doi":"10.1109/mms55062.2022.9825522","DOIUrl":null,"url":null,"abstract":"This work discusses the design and the expected results of two stacked-cells implemented in a $0.15 \\mu \\mathrm{m}$ gate-length Gallium Nitride (GaN) Monolithic Microwave Integrated Circuit (MMIC) technology for K-band power applications. Both cells are based on the same overall active periphery but one exploits a self-bias (SeB) approach for the common gate device, whereas the other is biased on a more traditional independent bias routing (SaB). Moreover, with respect to the traditional approach, in both cells the common source device is split in two in order to reduce the parasitic contribution and also to obtain a more compact and easy to implement overall stacked cell. The main goal of this paper is to provide a fair comparison between SeB and SaB stacked cells, by highlighting pros and cons of both approaches in terms of linear and nonlinear performances.","PeriodicalId":124088,"journal":{"name":"2022 Microwave Mediterranean Symposium (MMS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaN Stacked Cells for Power Applications in K-Band: A Comparative Study\",\"authors\":\"Stela Furxhi, Simone De Marzi, R. Giofré, P. Colantonio\",\"doi\":\"10.1109/mms55062.2022.9825522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work discusses the design and the expected results of two stacked-cells implemented in a $0.15 \\\\mu \\\\mathrm{m}$ gate-length Gallium Nitride (GaN) Monolithic Microwave Integrated Circuit (MMIC) technology for K-band power applications. Both cells are based on the same overall active periphery but one exploits a self-bias (SeB) approach for the common gate device, whereas the other is biased on a more traditional independent bias routing (SaB). Moreover, with respect to the traditional approach, in both cells the common source device is split in two in order to reduce the parasitic contribution and also to obtain a more compact and easy to implement overall stacked cell. The main goal of this paper is to provide a fair comparison between SeB and SaB stacked cells, by highlighting pros and cons of both approaches in terms of linear and nonlinear performances.\",\"PeriodicalId\":124088,\"journal\":{\"name\":\"2022 Microwave Mediterranean Symposium (MMS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Microwave Mediterranean Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mms55062.2022.9825522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Microwave Mediterranean Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms55062.2022.9825522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作讨论了两个堆叠单元的设计和预期结果,实现在$0.15 \mu \mathrm{m}$门长氮化镓(GaN)单片微波集成电路(MMIC)技术中,用于k波段功率应用。两个单元都基于相同的整体有源外围,但其中一个利用自偏置(SeB)方法用于公共栅极器件,而另一个则采用更传统的独立偏置路由(SaB)。此外,与传统方法相比,在两个单元中,为了减少寄生贡献,也为了获得更紧凑和易于实现的整体堆叠单元,公共源器件被分成两部分。本文的主要目标是通过突出两种方法在线性和非线性性能方面的优缺点,提供SeB和SaB堆叠单元之间的公平比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaN Stacked Cells for Power Applications in K-Band: A Comparative Study
This work discusses the design and the expected results of two stacked-cells implemented in a $0.15 \mu \mathrm{m}$ gate-length Gallium Nitride (GaN) Monolithic Microwave Integrated Circuit (MMIC) technology for K-band power applications. Both cells are based on the same overall active periphery but one exploits a self-bias (SeB) approach for the common gate device, whereas the other is biased on a more traditional independent bias routing (SaB). Moreover, with respect to the traditional approach, in both cells the common source device is split in two in order to reduce the parasitic contribution and also to obtain a more compact and easy to implement overall stacked cell. The main goal of this paper is to provide a fair comparison between SeB and SaB stacked cells, by highlighting pros and cons of both approaches in terms of linear and nonlinear performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-Printed FSS Plasterboard for Wireless Indoor Applications Human Body Exposure to a Vehicular Antenna: a Numerical Study in a Realistic Military Scenario A new tunable frequency 4xl MIMO antennas loaded with liquid crystal dedicated for 5G and WiGig applications Temperature-sensitive experimental medical treatments with solid-state microwave generator GaN-based Single Stage Low Noise Amplifier for X-band Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1