基于PCA的基于学习的超分辨率图像质量改进

S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai
{"title":"基于PCA的基于学习的超分辨率图像质量改进","authors":"S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai","doi":"10.1109/GCCE.2012.6379917","DOIUrl":null,"url":null,"abstract":"Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.","PeriodicalId":299732,"journal":{"name":"The 1st IEEE Global Conference on Consumer Electronics 2012","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Image quality improvement for learning-based super-resolution with PCA\",\"authors\":\"S. Miura, Y. Kawamoto, S. Suzuki, T. Goto, S. Hirano, M. Sakurai\",\"doi\":\"10.1109/GCCE.2012.6379917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.\",\"PeriodicalId\":299732,\"journal\":{\"name\":\"The 1st IEEE Global Conference on Consumer Electronics 2012\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 1st IEEE Global Conference on Consumer Electronics 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2012.6379917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Global Conference on Consumer Electronics 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2012.6379917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在此之前,我们提出了一种基于学习的基于TV正则化方法的超分辨率方法,该方法通过去除数据库冗余大大减少了图像处理时间。但是,由于数据库冗余度的过度降低,在重构图像中会出现噪声。在本文中,我们提出了一种新的基于学习的超分辨率方法,其中利用主成分分析(PCA)去除噪声。所获得的算法显著降低了复杂度,并保持了相当的图像质量。这有助于采用基于学习的超分辨率电影,例如互联网和高清电视电影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image quality improvement for learning-based super-resolution with PCA
Previously, we proposed a learning-based super-resolution method using the TV regularization method, which significantly reduced image processing time by removing database redundancy. However, there was a problem when noise appeared in reconstructed images because of an excessive reduction in database redundancy. In this paper, we propose a new learning-based super-resolution method, where noise is removed by utilizing Principal Components Analysis (PCA). The obtained algorithms significantly reduce the complexity and maintain a comparable image quality. This facilitates the adoption of learning-based super-resolution by motion pictures, e.g., Internet and HDTV movies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rule generation method for electrical appliances management systems with home EoD Lane departure warning system based on dynamic vanishing point adjustment Machine vision system for surface defect inspection of printed silicon solar cells Atomic fragmentation for efficient opportunistic multicasting over cognitive radio networks Implementation and evaluation of NTMobile with Android smartphones in IPv4/IPv6 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1