基于未知神经网络的频率秩阶统计量心电识别系统

K. Tseng, Dachao Lee, William Hurst, Fangzhou Lin, Andrew W. H. Ip
{"title":"基于未知神经网络的频率秩阶统计量心电识别系统","authors":"K. Tseng, Dachao Lee, William Hurst, Fangzhou Lin, Andrew W. H. Ip","doi":"10.1109/ES.2016.27","DOIUrl":null,"url":null,"abstract":"Electrocardiograms (ECG) contain biological information which is unique to the individual. In this paper, an ECG identification system, which uses Frequency Rank Order Statistics (FROS) as a feature extraction method and Back-Propagation Neural Network (BPNN) classifiers to identify 'other classes', is proposed. FROS handle different ECG states and BPNN classifiers, with random input weights, are used to generate a relatively high accuracy model for the identification system. Additionally, in the output layer, classified patterns are categorized according to the maximum value of the output layer nodes. Similar data is grouped into one category for the final identification result. Experiments show that the BPNN classifier produces more accurate results than an SVM and Bayesian classifier achieve on average. The proposed approach also out-performs SVMNN and LVQNN. The identification system, put forward in this paper, may be applied to an intelligent vehicular system, as an application example.","PeriodicalId":184435,"journal":{"name":"2016 4th International Conference on Enterprise Systems (ES)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Frequency Rank Order Statistic with Unknown Neural Network for ECG Identification System\",\"authors\":\"K. Tseng, Dachao Lee, William Hurst, Fangzhou Lin, Andrew W. H. Ip\",\"doi\":\"10.1109/ES.2016.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiograms (ECG) contain biological information which is unique to the individual. In this paper, an ECG identification system, which uses Frequency Rank Order Statistics (FROS) as a feature extraction method and Back-Propagation Neural Network (BPNN) classifiers to identify 'other classes', is proposed. FROS handle different ECG states and BPNN classifiers, with random input weights, are used to generate a relatively high accuracy model for the identification system. Additionally, in the output layer, classified patterns are categorized according to the maximum value of the output layer nodes. Similar data is grouped into one category for the final identification result. Experiments show that the BPNN classifier produces more accurate results than an SVM and Bayesian classifier achieve on average. The proposed approach also out-performs SVMNN and LVQNN. The identification system, put forward in this paper, may be applied to an intelligent vehicular system, as an application example.\",\"PeriodicalId\":184435,\"journal\":{\"name\":\"2016 4th International Conference on Enterprise Systems (ES)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Conference on Enterprise Systems (ES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ES.2016.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Enterprise Systems (ES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ES.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心电图(ECG)包含个体独有的生物信息。本文提出了一种利用频率秩次统计量(FROS)作为特征提取方法,利用反向传播神经网络(BPNN)分类器识别“其他类”的心电识别系统。FROS处理不同的心电状态,使用随机输入权值的bp神经网络分类器为识别系统生成相对高精度的模型。此外,在输出层中,根据输出层节点的最大值对分类模式进行分类。相似的数据被归为一类,以获得最终的识别结果。实验表明,bp神经网络分类器的平均准确率高于支持向量机和贝叶斯分类器。该方法也优于SVMNN和LVQNN。本文提出的识别系统可作为应用实例应用于智能车载系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency Rank Order Statistic with Unknown Neural Network for ECG Identification System
Electrocardiograms (ECG) contain biological information which is unique to the individual. In this paper, an ECG identification system, which uses Frequency Rank Order Statistics (FROS) as a feature extraction method and Back-Propagation Neural Network (BPNN) classifiers to identify 'other classes', is proposed. FROS handle different ECG states and BPNN classifiers, with random input weights, are used to generate a relatively high accuracy model for the identification system. Additionally, in the output layer, classified patterns are categorized according to the maximum value of the output layer nodes. Similar data is grouped into one category for the final identification result. Experiments show that the BPNN classifier produces more accurate results than an SVM and Bayesian classifier achieve on average. The proposed approach also out-performs SVMNN and LVQNN. The identification system, put forward in this paper, may be applied to an intelligent vehicular system, as an application example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reflections on SOA and Microservices Recommendations for Data Visualizations Based on Gestalt Patterns The Design and Implementation of Automatic Grabbing Tool in Tripadvisor Security Alignment Analysis of Software Product Lines Towards an IT Service Lifecycle Management (ITSLM) Concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1