A. Rahman, Hossam Amer, A. Prihozhy, Christophe Lucarz, M. Mattavelli
{"title":"基于fpga的复杂信号处理系统的优化方法","authors":"A. Rahman, Hossam Amer, A. Prihozhy, Christophe Lucarz, M. Mattavelli","doi":"10.1109/DASIP.2011.6136878","DOIUrl":null,"url":null,"abstract":"Signal processing designs are becoming increasingly complex with demands for more advanced algorithms. Designers are now seeking high-level tools and methodology to help manage complexity and increase productivity. Recently, CAL dataflow language has been specified which is capable of synthesizing dataflow description into RTL codes for hardware implementation, and based on several case studies, have shown promising results. However, no work has been done on global network analysis, which could increase the optimization space. In this paper, we introduce methodologies to analyze and optimize CAL programs by determining which actions should be parallelized, pipelined, or refactored for the highest throughput gain, and then providing tools and techniques to achieve this using minimum resource. As a case study on the RVC MPEG-4 SP Intra decoder for implementation on Virtex-5 FPGA, experimental results confirmed our analysis with throughput gain of up to 3.5x using relatively-minor additional slice compared to the reference design.","PeriodicalId":199500,"journal":{"name":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization methodologies for complex FPGA-based signal processing systems with CAL\",\"authors\":\"A. Rahman, Hossam Amer, A. Prihozhy, Christophe Lucarz, M. Mattavelli\",\"doi\":\"10.1109/DASIP.2011.6136878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal processing designs are becoming increasingly complex with demands for more advanced algorithms. Designers are now seeking high-level tools and methodology to help manage complexity and increase productivity. Recently, CAL dataflow language has been specified which is capable of synthesizing dataflow description into RTL codes for hardware implementation, and based on several case studies, have shown promising results. However, no work has been done on global network analysis, which could increase the optimization space. In this paper, we introduce methodologies to analyze and optimize CAL programs by determining which actions should be parallelized, pipelined, or refactored for the highest throughput gain, and then providing tools and techniques to achieve this using minimum resource. As a case study on the RVC MPEG-4 SP Intra decoder for implementation on Virtex-5 FPGA, experimental results confirmed our analysis with throughput gain of up to 3.5x using relatively-minor additional slice compared to the reference design.\",\"PeriodicalId\":199500,\"journal\":{\"name\":\"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2011.6136878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2011.6136878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization methodologies for complex FPGA-based signal processing systems with CAL
Signal processing designs are becoming increasingly complex with demands for more advanced algorithms. Designers are now seeking high-level tools and methodology to help manage complexity and increase productivity. Recently, CAL dataflow language has been specified which is capable of synthesizing dataflow description into RTL codes for hardware implementation, and based on several case studies, have shown promising results. However, no work has been done on global network analysis, which could increase the optimization space. In this paper, we introduce methodologies to analyze and optimize CAL programs by determining which actions should be parallelized, pipelined, or refactored for the highest throughput gain, and then providing tools and techniques to achieve this using minimum resource. As a case study on the RVC MPEG-4 SP Intra decoder for implementation on Virtex-5 FPGA, experimental results confirmed our analysis with throughput gain of up to 3.5x using relatively-minor additional slice compared to the reference design.