通过数据挖掘算法发现扑克规则的学习模块

Tsenguun Tsogbadrakh, Amal Alhosban
{"title":"通过数据挖掘算法发现扑克规则的学习模块","authors":"Tsenguun Tsogbadrakh, Amal Alhosban","doi":"10.1109/CSCI51800.2020.00076","DOIUrl":null,"url":null,"abstract":"Data mining classification methods can be a powerful tool when it comes to learning card game rules such as Poker. There are millions of possible combination in the game and making a decision tree to cover all the rules is not desirable. We used the J48 decision tree model of data mining software Weka and made parameter analysis. Then we show experimentally how the number of instances is affecting the correctness of the classification, and propose an equation to determine accuracy based on the number of instances in a data set. We examine several different attributes and the experiment shows high performance.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering a Learning Module for Poker’s Rule through Data Mining Algorithms\",\"authors\":\"Tsenguun Tsogbadrakh, Amal Alhosban\",\"doi\":\"10.1109/CSCI51800.2020.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining classification methods can be a powerful tool when it comes to learning card game rules such as Poker. There are millions of possible combination in the game and making a decision tree to cover all the rules is not desirable. We used the J48 decision tree model of data mining software Weka and made parameter analysis. Then we show experimentally how the number of instances is affecting the correctness of the classification, and propose an equation to determine accuracy based on the number of instances in a data set. We examine several different attributes and the experiment shows high performance.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当涉及到学习纸牌游戏规则(如扑克)时,数据挖掘分类方法可能是一个强大的工具。游戏中有数百万种可能的组合,制作一棵涵盖所有规则的决策树是不可取的。采用数据挖掘软件Weka中的J48决策树模型进行参数分析。然后,我们通过实验展示了实例数量如何影响分类的正确性,并提出了一个基于数据集中实例数量来确定准确性的方程。我们测试了几个不同的属性,实验显示了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering a Learning Module for Poker’s Rule through Data Mining Algorithms
Data mining classification methods can be a powerful tool when it comes to learning card game rules such as Poker. There are millions of possible combination in the game and making a decision tree to cover all the rules is not desirable. We used the J48 decision tree model of data mining software Weka and made parameter analysis. Then we show experimentally how the number of instances is affecting the correctness of the classification, and propose an equation to determine accuracy based on the number of instances in a data set. We examine several different attributes and the experiment shows high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1