三种基于SAPF的谐波缓解进化算法的比较

Rambir Singh, Ashutosh Kumar Singh, Pradeep Kumar
{"title":"三种基于SAPF的谐波缓解进化算法的比较","authors":"Rambir Singh, Ashutosh Kumar Singh, Pradeep Kumar","doi":"10.1109/ICIINFS.2011.6038100","DOIUrl":null,"url":null,"abstract":"For power quality improvement, shunt active power filters (SAPF) having PWM controlled voltage source inverter (VSI) topology is extensively used in distribution networks, which utilizes the PI controller for reference voltage tracking. PI controller tuning with the assumption of linear PWM model leads to unsatisfactory results under varying operating conditions. Optimal tuning of PI gains is required to get the best response of PI controllers. This paper presents a comparative study of PI controller tuning in a SAPF using three evolutionary algorithms (EAs), viz. bacteria foraging (BF), bacteria foraging with swarming (BFS) and particle swarm optimisation (PSO), for current harmonic mitigation. The minimization of integral time square error (ITSE) and integral time absolute error (ITAE) as performance indices is used as objective function for optimisation. The simulation results show that PSO tuned PI with ITSE as minimized parameter performs better.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Comparison of three evolutionary algorithms for harmonic mitigation using SAPF\",\"authors\":\"Rambir Singh, Ashutosh Kumar Singh, Pradeep Kumar\",\"doi\":\"10.1109/ICIINFS.2011.6038100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For power quality improvement, shunt active power filters (SAPF) having PWM controlled voltage source inverter (VSI) topology is extensively used in distribution networks, which utilizes the PI controller for reference voltage tracking. PI controller tuning with the assumption of linear PWM model leads to unsatisfactory results under varying operating conditions. Optimal tuning of PI gains is required to get the best response of PI controllers. This paper presents a comparative study of PI controller tuning in a SAPF using three evolutionary algorithms (EAs), viz. bacteria foraging (BF), bacteria foraging with swarming (BFS) and particle swarm optimisation (PSO), for current harmonic mitigation. The minimization of integral time square error (ITSE) and integral time absolute error (ITAE) as performance indices is used as objective function for optimisation. The simulation results show that PSO tuned PI with ITSE as minimized parameter performs better.\",\"PeriodicalId\":353966,\"journal\":{\"name\":\"2011 6th International Conference on Industrial and Information Systems\",\"volume\":\"52 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2011.6038100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了改善电能质量,配电网中广泛采用具有PWM控制电压源逆变器(VSI)拓扑结构的并联有源电力滤波器(SAPF),该滤波器利用PI控制器进行参考电压跟踪。基于线性PWM模型的PI控制器整定在不同的工作条件下,结果并不理想。为了获得最佳的PI控制器响应,需要对PI增益进行最优调整。本文介绍了使用三种进化算法(ea),即细菌觅食(BF),细菌觅食与群体(BFS)和粒子群优化(PSO)的SAPF中PI控制器调谐的比较研究,用于电流谐波缓解。以积分时间平方误差(ITSE)和积分时间绝对误差(ITAE)的最小化为性能指标作为优化的目标函数。仿真结果表明,以ITSE为最小参数的粒子群调谐PI具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of three evolutionary algorithms for harmonic mitigation using SAPF
For power quality improvement, shunt active power filters (SAPF) having PWM controlled voltage source inverter (VSI) topology is extensively used in distribution networks, which utilizes the PI controller for reference voltage tracking. PI controller tuning with the assumption of linear PWM model leads to unsatisfactory results under varying operating conditions. Optimal tuning of PI gains is required to get the best response of PI controllers. This paper presents a comparative study of PI controller tuning in a SAPF using three evolutionary algorithms (EAs), viz. bacteria foraging (BF), bacteria foraging with swarming (BFS) and particle swarm optimisation (PSO), for current harmonic mitigation. The minimization of integral time square error (ITSE) and integral time absolute error (ITAE) as performance indices is used as objective function for optimisation. The simulation results show that PSO tuned PI with ITSE as minimized parameter performs better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selective load control to provide primary frequency response in the wake of introducing new large thermal power plants to Sri Lanka A trust computing mechanism for cloud computing with multilevel thresholding Distributed beamforming techniques for dual-hop decode-and-forward MIMO relay networks Performance comparison of optical receivers using different filtering algorithms and modulation schemes A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1