{"title":"通信和动力到海底:MBARI的海洋观测系统系泊概念","authors":"M. Chaffey, E. Mellinger, W. Paul","doi":"10.1109/OCEANS.2001.968389","DOIUrl":null,"url":null,"abstract":"Operating instrumentation for collecting time-series experimental data from remote benthic sites in the world's oceans has long been a challenging problem for oceanographers. A moored buoy system concept is presented that provides bi-directional near real-time communication to remote benthic instrumentation at flexible sites up to 4000 m deep using an electro-optical anchor cable. Designed to be deployed from regional class vessels, the mooring system is to be one of the main platforms for the MBARI Ocean Observatory System (MOOS) currently under development. The system concept supports a broad range of instrumentation and sampling strategies including benthic instrument clusters covering up to 10 km of seafloor, upper water column instrumentation and future AUV docking operations. Described are the functional requirements of the mooring system, the design approach, the results of the design trade-off studies completed and the resulting mooring concept design.","PeriodicalId":326183,"journal":{"name":"MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Communications and power to the seafloor: MBARI's Ocean Observing System mooring concept\",\"authors\":\"M. Chaffey, E. Mellinger, W. Paul\",\"doi\":\"10.1109/OCEANS.2001.968389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating instrumentation for collecting time-series experimental data from remote benthic sites in the world's oceans has long been a challenging problem for oceanographers. A moored buoy system concept is presented that provides bi-directional near real-time communication to remote benthic instrumentation at flexible sites up to 4000 m deep using an electro-optical anchor cable. Designed to be deployed from regional class vessels, the mooring system is to be one of the main platforms for the MBARI Ocean Observatory System (MOOS) currently under development. The system concept supports a broad range of instrumentation and sampling strategies including benthic instrument clusters covering up to 10 km of seafloor, upper water column instrumentation and future AUV docking operations. Described are the functional requirements of the mooring system, the design approach, the results of the design trade-off studies completed and the resulting mooring concept design.\",\"PeriodicalId\":326183,\"journal\":{\"name\":\"MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2001.968389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2001.968389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Communications and power to the seafloor: MBARI's Ocean Observing System mooring concept
Operating instrumentation for collecting time-series experimental data from remote benthic sites in the world's oceans has long been a challenging problem for oceanographers. A moored buoy system concept is presented that provides bi-directional near real-time communication to remote benthic instrumentation at flexible sites up to 4000 m deep using an electro-optical anchor cable. Designed to be deployed from regional class vessels, the mooring system is to be one of the main platforms for the MBARI Ocean Observatory System (MOOS) currently under development. The system concept supports a broad range of instrumentation and sampling strategies including benthic instrument clusters covering up to 10 km of seafloor, upper water column instrumentation and future AUV docking operations. Described are the functional requirements of the mooring system, the design approach, the results of the design trade-off studies completed and the resulting mooring concept design.