{"title":"实时云上内存和空间高效的数据完整性校验方案","authors":"Dhanraj, Chandana, Puneeth, Punith Raj, Rohith","doi":"10.30534/ijccn/2018/56722018","DOIUrl":null,"url":null,"abstract":"As an important application in cloud computing, cloud storage offers user scalable, flexible, and high-quality data storage and computation services. A growing number of data owners choose to outsource data files to the cloud. Because cloud storage servers are not fully trustworthy, data owners need dependable means to check the possession for their files outsourced to remote cloud servers. To address this crucial problem, some remote data possession checking (RDPC) protocols have been presented. But many existing schemes have vulnerabilities in efficiency or data dynamics. In this project, we provide a new efficient RDPC protocol based on homomorphism hash function. The new scheme is provably secure against forgery attack; replace attack, and replay attack based on a typical security model. To support data dynamics, an operation record table (ORT) is introduced to track operations on file blocks. We further give a new optimized implementation for the ORT, which makes the cost of accessing ORT nearly constant. Moreover, we make the comprehensive performance analysis, which shows that our scheme has advantages in computation and communication costs. Prototype implementation and experiments exhibit that the scheme is feasible for real applications","PeriodicalId":313852,"journal":{"name":"International Journal of Computing, Communications and Networking","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEMORY AND SPACE EFFICIENT DATA INTEGRITY CHECKING SCHEME ON REAL TIME CLOUDS\",\"authors\":\"Dhanraj, Chandana, Puneeth, Punith Raj, Rohith\",\"doi\":\"10.30534/ijccn/2018/56722018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an important application in cloud computing, cloud storage offers user scalable, flexible, and high-quality data storage and computation services. A growing number of data owners choose to outsource data files to the cloud. Because cloud storage servers are not fully trustworthy, data owners need dependable means to check the possession for their files outsourced to remote cloud servers. To address this crucial problem, some remote data possession checking (RDPC) protocols have been presented. But many existing schemes have vulnerabilities in efficiency or data dynamics. In this project, we provide a new efficient RDPC protocol based on homomorphism hash function. The new scheme is provably secure against forgery attack; replace attack, and replay attack based on a typical security model. To support data dynamics, an operation record table (ORT) is introduced to track operations on file blocks. We further give a new optimized implementation for the ORT, which makes the cost of accessing ORT nearly constant. Moreover, we make the comprehensive performance analysis, which shows that our scheme has advantages in computation and communication costs. Prototype implementation and experiments exhibit that the scheme is feasible for real applications\",\"PeriodicalId\":313852,\"journal\":{\"name\":\"International Journal of Computing, Communications and Networking\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijccn/2018/56722018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijccn/2018/56722018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEMORY AND SPACE EFFICIENT DATA INTEGRITY CHECKING SCHEME ON REAL TIME CLOUDS
As an important application in cloud computing, cloud storage offers user scalable, flexible, and high-quality data storage and computation services. A growing number of data owners choose to outsource data files to the cloud. Because cloud storage servers are not fully trustworthy, data owners need dependable means to check the possession for their files outsourced to remote cloud servers. To address this crucial problem, some remote data possession checking (RDPC) protocols have been presented. But many existing schemes have vulnerabilities in efficiency or data dynamics. In this project, we provide a new efficient RDPC protocol based on homomorphism hash function. The new scheme is provably secure against forgery attack; replace attack, and replay attack based on a typical security model. To support data dynamics, an operation record table (ORT) is introduced to track operations on file blocks. We further give a new optimized implementation for the ORT, which makes the cost of accessing ORT nearly constant. Moreover, we make the comprehensive performance analysis, which shows that our scheme has advantages in computation and communication costs. Prototype implementation and experiments exhibit that the scheme is feasible for real applications