超半球和双焦点全景透镜

C. Pernechele
{"title":"超半球和双焦点全景透镜","authors":"C. Pernechele","doi":"10.1117/12.2028099","DOIUrl":null,"url":null,"abstract":"Panoramic objectives are becoming, due to the availability of large area digital sensors, a diffuse optical system to catch very wide field of view (FoV). Typical panoramic lens have a view angle of 360° in azimuth (the plane orthogonal to the optical axis), just like a fish-eye, and plus and minus tens of degrees in elevation angle, i. e. above and below the horizon. Most common panoramic lenses use a curved, usually aspheric, mirror placed in front of a commercial objective to capture a 360° area around the horizon. More recent design use a catadiopter instead of a mirror. Both the solutions have the draw-back effect to obscure the frontal view of the objective, producing the classic \"donut-shape\" image in the focal plane. We present here a panoramic lens in which the frontal field is make available to be imaged in the focal plane, by means of a frontal optics, together with the panoramic field, producing a FoV of 360° in azimuth and 260° in elevation; it have then the capabilities of a fish eye plus those of a panoramic lens: we call it hyper-hemispheric lens. We design also a lens in which the frontal optics have a different paraxial focal length with respect to the equivalent panoramic; with this solution one can image, in the same sensor, the panoramic field plus an enlargement of a portion of it: that's the bifocal panoramic lens. Both the lenses have been designed and realized and we show here the optical scheme, the nominal performances and some pictures as an example.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hyper-hemispheric and bifocal panoramic lenses\",\"authors\":\"C. Pernechele\",\"doi\":\"10.1117/12.2028099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Panoramic objectives are becoming, due to the availability of large area digital sensors, a diffuse optical system to catch very wide field of view (FoV). Typical panoramic lens have a view angle of 360° in azimuth (the plane orthogonal to the optical axis), just like a fish-eye, and plus and minus tens of degrees in elevation angle, i. e. above and below the horizon. Most common panoramic lenses use a curved, usually aspheric, mirror placed in front of a commercial objective to capture a 360° area around the horizon. More recent design use a catadiopter instead of a mirror. Both the solutions have the draw-back effect to obscure the frontal view of the objective, producing the classic \\\"donut-shape\\\" image in the focal plane. We present here a panoramic lens in which the frontal field is make available to be imaged in the focal plane, by means of a frontal optics, together with the panoramic field, producing a FoV of 360° in azimuth and 260° in elevation; it have then the capabilities of a fish eye plus those of a panoramic lens: we call it hyper-hemispheric lens. We design also a lens in which the frontal optics have a different paraxial focal length with respect to the equivalent panoramic; with this solution one can image, in the same sensor, the panoramic field plus an enlargement of a portion of it: that's the bifocal panoramic lens. Both the lenses have been designed and realized and we show here the optical scheme, the nominal performances and some pictures as an example.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2028099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2028099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于大面积数字传感器的可用性,全景物镜正在成为一个漫射光学系统,以捕捉非常广泛的视场(FoV)。典型的全景镜头在方位角上的视角为360°(与光轴正交的平面),就像鱼眼一样,在仰角上有正负几十度,即在地平线以上和以下。最常见的全景镜头是在商业物镜前放置一个弯曲的、通常是非球面的反射镜,以捕捉地平线周围360°的区域。最近的设计使用了弹射镜而不是反射镜。这两种解决方案都有收缩效应,模糊了物镜的正面视图,在焦平面上产生经典的“甜甜圈形”图像。我们在这里提出了一个全景镜头,其中正面场是可用的焦平面成像,通过正面光学元件,与全景场一起,产生360°的方位角和260°的仰角视场;它具有鱼眼和全景透镜的功能:我们称之为超半球透镜。我们还设计了一个镜头,其中正面光学有一个不同的近轴焦距相对于等效全景;有了这个解决方案,人们可以在同一个传感器上成像,全景视野加上其中一部分的放大:这就是双焦点全景镜头。这两种镜头的设计和实现,我们在这里给出了光学方案,标称性能和一些图片作为例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyper-hemispheric and bifocal panoramic lenses
Panoramic objectives are becoming, due to the availability of large area digital sensors, a diffuse optical system to catch very wide field of view (FoV). Typical panoramic lens have a view angle of 360° in azimuth (the plane orthogonal to the optical axis), just like a fish-eye, and plus and minus tens of degrees in elevation angle, i. e. above and below the horizon. Most common panoramic lenses use a curved, usually aspheric, mirror placed in front of a commercial objective to capture a 360° area around the horizon. More recent design use a catadiopter instead of a mirror. Both the solutions have the draw-back effect to obscure the frontal view of the objective, producing the classic "donut-shape" image in the focal plane. We present here a panoramic lens in which the frontal field is make available to be imaged in the focal plane, by means of a frontal optics, together with the panoramic field, producing a FoV of 360° in azimuth and 260° in elevation; it have then the capabilities of a fish eye plus those of a panoramic lens: we call it hyper-hemispheric lens. We design also a lens in which the frontal optics have a different paraxial focal length with respect to the equivalent panoramic; with this solution one can image, in the same sensor, the panoramic field plus an enlargement of a portion of it: that's the bifocal panoramic lens. Both the lenses have been designed and realized and we show here the optical scheme, the nominal performances and some pictures as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact camera technologies for real-time false-color imaging in the SWIR band Arbitrary waveform generation using optical direct digital synthesis Advances in AlGaInN laser diode technology for defence applications Design of high sensitivity detector for underwater communication system Automated generation of high-quality training data for appearance-based object models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1