Inception-Resnet-v1模型的普遍对抗性摄动攻击及对抗性再训练作为一种合适防御机制的有效性

Rithvik Senthil, Lakshana Ravishankar, Snofy D. Dunston, M. V
{"title":"Inception-Resnet-v1模型的普遍对抗性摄动攻击及对抗性再训练作为一种合适防御机制的有效性","authors":"Rithvik Senthil, Lakshana Ravishankar, Snofy D. Dunston, M. V","doi":"10.1109/ICITIIT57246.2023.10068722","DOIUrl":null,"url":null,"abstract":"In this study, we analyse the impact of the Universal Adversarial Perturbation Attack on the Inception-ResNet-v1 model using the lung CT scan dataset for COVID-19 classification and the retinal OCT scan dataset for Diabetic Macular Edema (DME) classification. The effectiveness of adversarial retraining as a suitable defense mechanism against this attack is examined. This study is categorised into three sections - the implementation of the Inception-ResNet-v1 model, the effect of the attack and the adversarial retraining.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Adversarial Perturbation Attack on the Inception-Resnet-v1 model and the Effectiveness of Adversarial Retraining as a Suitable Defense Mechanism\",\"authors\":\"Rithvik Senthil, Lakshana Ravishankar, Snofy D. Dunston, M. V\",\"doi\":\"10.1109/ICITIIT57246.2023.10068722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we analyse the impact of the Universal Adversarial Perturbation Attack on the Inception-ResNet-v1 model using the lung CT scan dataset for COVID-19 classification and the retinal OCT scan dataset for Diabetic Macular Edema (DME) classification. The effectiveness of adversarial retraining as a suitable defense mechanism against this attack is examined. This study is categorised into three sections - the implementation of the Inception-ResNet-v1 model, the effect of the attack and the adversarial retraining.\",\"PeriodicalId\":170485,\"journal\":{\"name\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT57246.2023.10068722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们使用肺部CT扫描数据集用于COVID-19分类和视网膜OCT扫描数据集用于糖尿病性黄斑水肿(DME)分类,分析了通用对抗性扰动攻击对Inception-ResNet-v1模型的影响。对抗性再训练作为一种合适的防御机制的有效性进行了检验。本研究分为三个部分——Inception-ResNet-v1模型的实施、攻击的效果和对抗性再训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal Adversarial Perturbation Attack on the Inception-Resnet-v1 model and the Effectiveness of Adversarial Retraining as a Suitable Defense Mechanism
In this study, we analyse the impact of the Universal Adversarial Perturbation Attack on the Inception-ResNet-v1 model using the lung CT scan dataset for COVID-19 classification and the retinal OCT scan dataset for Diabetic Macular Edema (DME) classification. The effectiveness of adversarial retraining as a suitable defense mechanism against this attack is examined. This study is categorised into three sections - the implementation of the Inception-ResNet-v1 model, the effect of the attack and the adversarial retraining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Enhanced Hybrid Scheme for IP Traceback Design of a Crop Disease Detection Model using Multi-parametric Bio-inspired Feature Representation and Ensemble Classification A Truncated SVD Framework for Online Hate Speech Detection on the ETHOS Dataset Self-Driving Car: Simulation of Highly Automated Vehicle Technology using Convolution Neural Networks Mutable Blockchain for Identity Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1