基于动态自适应神经模糊推理系统的非线性系统建模

Sevcan Yilmaz, Y. Oysal
{"title":"基于动态自适应神经模糊推理系统的非线性系统建模","authors":"Sevcan Yilmaz, Y. Oysal","doi":"10.1109/INISTA.2014.6873619","DOIUrl":null,"url":null,"abstract":"This paper introduces the architecture and learning procedure of dynamic adaptive neuro-fuzzy inference system (DANFIS) for nonlinear dynamical system modeling. In our DANIS model, IF part of the rules are comprised of Gaussian type membership functions and THEN part of the rules are differential equations of linear functions. In order to find optimal model parameters, a gradient based algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used. Gradients in this algorithm is calculated by using adjoint sensitivity method. To validate the model, two simulations, Van der Pol oscillator and tunnel diode circuit, are performed. Simulation results are also given to demonstrate the effectiveness of the proposed DANFIS with learning method.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Nonlinear system modeling with dynamic adaptive neuro-fuzzy inference system\",\"authors\":\"Sevcan Yilmaz, Y. Oysal\",\"doi\":\"10.1109/INISTA.2014.6873619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the architecture and learning procedure of dynamic adaptive neuro-fuzzy inference system (DANFIS) for nonlinear dynamical system modeling. In our DANIS model, IF part of the rules are comprised of Gaussian type membership functions and THEN part of the rules are differential equations of linear functions. In order to find optimal model parameters, a gradient based algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used. Gradients in this algorithm is calculated by using adjoint sensitivity method. To validate the model, two simulations, Van der Pol oscillator and tunnel diode circuit, are performed. Simulation results are also given to demonstrate the effectiveness of the proposed DANFIS with learning method.\",\"PeriodicalId\":339652,\"journal\":{\"name\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2014.6873619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了用于非线性动力系统建模的动态自适应神经模糊推理系统(DANFIS)的体系结构和学习过程。在我们的DANIS模型中,如果部分规则由高斯型隶属函数组成,那么部分规则是线性函数的微分方程。为了找到最优的模型参数,采用了基于梯度的Broyden-Fletcher-Goldfarb-Shanno (BFGS)算法。该算法采用伴随灵敏度法计算梯度。为了验证该模型,分别进行了范德堡尔振荡器和隧道二极管电路的仿真。仿真结果验证了基于学习方法的DANFIS的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear system modeling with dynamic adaptive neuro-fuzzy inference system
This paper introduces the architecture and learning procedure of dynamic adaptive neuro-fuzzy inference system (DANFIS) for nonlinear dynamical system modeling. In our DANIS model, IF part of the rules are comprised of Gaussian type membership functions and THEN part of the rules are differential equations of linear functions. In order to find optimal model parameters, a gradient based algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used. Gradients in this algorithm is calculated by using adjoint sensitivity method. To validate the model, two simulations, Van der Pol oscillator and tunnel diode circuit, are performed. Simulation results are also given to demonstrate the effectiveness of the proposed DANFIS with learning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1