推特数据中使用神经网络的事件定位

Usman Anjum, V. Zadorozhny, P. Krishnamurthy
{"title":"推特数据中使用神经网络的事件定位","authors":"Usman Anjum, V. Zadorozhny, P. Krishnamurthy","doi":"10.59297/uvzv1884","DOIUrl":null,"url":null,"abstract":"Twitter (one example of microblogging) is widely being used by researchers to understand human behavior, specifically how people behave when a significant event occurs and how it changes user microblogging patterns. The changing microblogging behavior can reveal patterns that can help in detecting real-world events. However, the Twitter data that is available has limitations, such as, it is incomplete and noisy and the samples are irregular. In this paper we create a model, called Twitter Behavior Agent-Based Model (TBAM) to simulate Twitter pattern and behavior using Agent-Based Modeling (ABM). The generated data from ABM simulations can be used in place or to complement the real-world data toward improving the accuracy of event detection. We confirm the validity of our model by finding the cross-correlation between the real data collected from Twitter and the data generated using TBAM.","PeriodicalId":254795,"journal":{"name":"Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localization of Events Using Neural Networks in Twitter Data\",\"authors\":\"Usman Anjum, V. Zadorozhny, P. Krishnamurthy\",\"doi\":\"10.59297/uvzv1884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter (one example of microblogging) is widely being used by researchers to understand human behavior, specifically how people behave when a significant event occurs and how it changes user microblogging patterns. The changing microblogging behavior can reveal patterns that can help in detecting real-world events. However, the Twitter data that is available has limitations, such as, it is incomplete and noisy and the samples are irregular. In this paper we create a model, called Twitter Behavior Agent-Based Model (TBAM) to simulate Twitter pattern and behavior using Agent-Based Modeling (ABM). The generated data from ABM simulations can be used in place or to complement the real-world data toward improving the accuracy of event detection. We confirm the validity of our model by finding the cross-correlation between the real data collected from Twitter and the data generated using TBAM.\",\"PeriodicalId\":254795,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59297/uvzv1884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59297/uvzv1884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Twitter(微博的一个例子)被研究人员广泛用于理解人类行为,特别是当重大事件发生时人们的行为以及它如何改变用户的微博模式。不断变化的微博行为可以揭示有助于检测现实世界事件的模式。然而,可用的Twitter数据有局限性,例如,它是不完整的,有噪声的,样本是不规则的。在本文中,我们创建了一个模型,称为Twitter行为基于代理的模型(TBAM)来模拟Twitter的模式和行为使用基于代理的建模(ABM)。从ABM模拟生成的数据可以用于适当的地方或补充真实世界的数据,以提高事件检测的准确性。通过发现从Twitter收集的真实数据与使用tam生成的数据之间的相互关系,我们证实了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization of Events Using Neural Networks in Twitter Data
Twitter (one example of microblogging) is widely being used by researchers to understand human behavior, specifically how people behave when a significant event occurs and how it changes user microblogging patterns. The changing microblogging behavior can reveal patterns that can help in detecting real-world events. However, the Twitter data that is available has limitations, such as, it is incomplete and noisy and the samples are irregular. In this paper we create a model, called Twitter Behavior Agent-Based Model (TBAM) to simulate Twitter pattern and behavior using Agent-Based Modeling (ABM). The generated data from ABM simulations can be used in place or to complement the real-world data toward improving the accuracy of event detection. We confirm the validity of our model by finding the cross-correlation between the real data collected from Twitter and the data generated using TBAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing the Psychosocial Situation in Crises and Disasters: Conceptualizing a Multi-Functional Crisis Information Platform (CIP-PS) Towards XAI for Information Extraction on Online Media Data for Disaster Risk Management An Innovative Scenario-based Modeling Tool for the Management of Resilient Water Resources Object Detection and Augmented Reality Annotations for Increased Situational Awareness in Light Smoke Conditions COBOT Safety Awareness: A RealTSL Demonstration in a Simulated System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1