STACnovGRU:基于时空自适应卷积GRU的天气预报

Deping Xiang, Pu Zhang, Shiming Xiang
{"title":"STACnovGRU:基于时空自适应卷积GRU的天气预报","authors":"Deping Xiang, Pu Zhang, Shiming Xiang","doi":"10.1117/12.2671060","DOIUrl":null,"url":null,"abstract":"Due to the complex spatio-temporal correlation of meteorological data, weather forecasting is a challenging task. Recently, with plenty of meteorological data available and the successful applications of deep learning technology in many areas, developing data-driven models for this task has achieved great attention. Especially, Convolutional Recurrent Neural Networks (CRNNs) have been shown to be effective in spatio-temporal predictive learning. The convolutional connection with shared weights is fixed for different spatial locations and timestamps, while spatio-temporal transformations of meteorological data are varying in both time and space. To address this problem, we developed a Spatio-Temporal Adaptive Convolution for the Gated Recurrent Unit (GRU) to improve the ability of extracting spatio-temporal features. For convenience, we abbreviate our model as STAConvGRU for weather forecasting. The key motivation behind STAConvGRU is to develop additional convolution layers under the framework of the ordinary RNN to learn simultaneously the sampling positions and weights of convolutional kernels. As a result, the adaptive convolution could select the positions and adjust the weights according to the spatio-temporal information. Comparative experiments are conducted on four types of meteorological datasets, including temperature, relative humidity, wind, and radar echo. The experimental results demonstrate the effectiveness and superiority of our proposed model.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STACnovGRU: weather forecasting based on spatio-temporal adaptive convolutional GRU\",\"authors\":\"Deping Xiang, Pu Zhang, Shiming Xiang\",\"doi\":\"10.1117/12.2671060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the complex spatio-temporal correlation of meteorological data, weather forecasting is a challenging task. Recently, with plenty of meteorological data available and the successful applications of deep learning technology in many areas, developing data-driven models for this task has achieved great attention. Especially, Convolutional Recurrent Neural Networks (CRNNs) have been shown to be effective in spatio-temporal predictive learning. The convolutional connection with shared weights is fixed for different spatial locations and timestamps, while spatio-temporal transformations of meteorological data are varying in both time and space. To address this problem, we developed a Spatio-Temporal Adaptive Convolution for the Gated Recurrent Unit (GRU) to improve the ability of extracting spatio-temporal features. For convenience, we abbreviate our model as STAConvGRU for weather forecasting. The key motivation behind STAConvGRU is to develop additional convolution layers under the framework of the ordinary RNN to learn simultaneously the sampling positions and weights of convolutional kernels. As a result, the adaptive convolution could select the positions and adjust the weights according to the spatio-temporal information. Comparative experiments are conducted on four types of meteorological datasets, including temperature, relative humidity, wind, and radar echo. The experimental results demonstrate the effectiveness and superiority of our proposed model.\",\"PeriodicalId\":227528,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于气象数据具有复杂的时空相关性,天气预报是一项具有挑战性的任务。近年来,随着大量的气象数据和深度学习技术在许多领域的成功应用,开发数据驱动的模型得到了广泛的关注。特别是卷积递归神经网络(CRNNs)在时空预测学习中的应用。对于不同的空间位置和时间戳,共享权值的卷积连接是固定的,而气象数据的时空转换在时间和空间上都是变化的。为了解决这一问题,我们为门控循环单元(GRU)开发了一种时空自适应卷积,以提高提取时空特征的能力。为方便起见,我们将模型缩写为STAConvGRU用于天气预报。STAConvGRU背后的关键动机是在普通RNN的框架下开发额外的卷积层,以同时学习卷积核的采样位置和权重。因此,自适应卷积可以根据时空信息选择位置和调整权重。在温度、相对湿度、风和雷达回波四种气象数据集上进行了对比试验。实验结果证明了该模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STACnovGRU: weather forecasting based on spatio-temporal adaptive convolutional GRU
Due to the complex spatio-temporal correlation of meteorological data, weather forecasting is a challenging task. Recently, with plenty of meteorological data available and the successful applications of deep learning technology in many areas, developing data-driven models for this task has achieved great attention. Especially, Convolutional Recurrent Neural Networks (CRNNs) have been shown to be effective in spatio-temporal predictive learning. The convolutional connection with shared weights is fixed for different spatial locations and timestamps, while spatio-temporal transformations of meteorological data are varying in both time and space. To address this problem, we developed a Spatio-Temporal Adaptive Convolution for the Gated Recurrent Unit (GRU) to improve the ability of extracting spatio-temporal features. For convenience, we abbreviate our model as STAConvGRU for weather forecasting. The key motivation behind STAConvGRU is to develop additional convolution layers under the framework of the ordinary RNN to learn simultaneously the sampling positions and weights of convolutional kernels. As a result, the adaptive convolution could select the positions and adjust the weights according to the spatio-temporal information. Comparative experiments are conducted on four types of meteorological datasets, including temperature, relative humidity, wind, and radar echo. The experimental results demonstrate the effectiveness and superiority of our proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hippocampus MRI diagnosis based on deep learning in application of preliminary screening of Alzheimer’s disease Global critic and local actor for campaign-tactic combat management in the joint operation simulation software Intelligent monitoring system of oil tank liquid level based on infrared thermal imaging Chinese named entity recognition incorporating syntactic information Object tracking based on foreground adaptive bounding box and motion state redetection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1