Palantir:在使用SDN的大规模分布式计算框架中重新获取网络邻近性

Ze Yu, Min Li, Xin Yang, Xiaolin Li
{"title":"Palantir:在使用SDN的大规模分布式计算框架中重新获取网络邻近性","authors":"Ze Yu, Min Li, Xin Yang, Xiaolin Li","doi":"10.1109/CLOUD.2014.66","DOIUrl":null,"url":null,"abstract":"Parallel/Distributed computing frameworks, such as MapReduce and Dryad, have been widely adopted to analyze massive data. Traditionally, these frameworks depend on manual configuration to acquire network proximity information to optimize the data placement and task scheduling. However, this approach is cumbersome, inflexible or even infeasible in largescale deployments, for example, across multiple datacenters. In this paper, we address this problem by utilizing the Software-Defined Networking (SDN) capability. We build Palantir, an SDN service specific for parallel/distributed computing frameworks to abstract the proximity information out of the network. Palantir frees the framework developers/ administrators from having to manually configure the network. In addition, Palantir is flexible because it allows different frameworks to define the proximity according to the framework-specific metrics. We design and implement a datacenter-aware MapReduce to demonstrate Palantir's usefullness. Our evaluation shows that, based on Palantir, datacenter-aware MapReduce achieves siginficant performance improvement.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Palantir: Reseizing Network Proximity in Large-Scale Distributed Computing Frameworks Using SDN\",\"authors\":\"Ze Yu, Min Li, Xin Yang, Xiaolin Li\",\"doi\":\"10.1109/CLOUD.2014.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel/Distributed computing frameworks, such as MapReduce and Dryad, have been widely adopted to analyze massive data. Traditionally, these frameworks depend on manual configuration to acquire network proximity information to optimize the data placement and task scheduling. However, this approach is cumbersome, inflexible or even infeasible in largescale deployments, for example, across multiple datacenters. In this paper, we address this problem by utilizing the Software-Defined Networking (SDN) capability. We build Palantir, an SDN service specific for parallel/distributed computing frameworks to abstract the proximity information out of the network. Palantir frees the framework developers/ administrators from having to manually configure the network. In addition, Palantir is flexible because it allows different frameworks to define the proximity according to the framework-specific metrics. We design and implement a datacenter-aware MapReduce to demonstrate Palantir's usefullness. Our evaluation shows that, based on Palantir, datacenter-aware MapReduce achieves siginficant performance improvement.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

并行/分布式计算框架,如MapReduce和Dryad,已被广泛用于分析海量数据。传统上,这些框架依赖于手动配置来获取网络接近信息,以优化数据放置和任务调度。然而,这种方法在大规模部署(例如跨多个数据中心的部署)中很麻烦、不灵活,甚至不可行。在本文中,我们通过利用软件定义网络(SDN)功能来解决这个问题。我们构建了Palantir,这是一种针对并行/分布式计算框架的SDN服务,用于从网络中抽象出邻近信息。Palantir将框架开发人员/管理员从手动配置网络中解放出来。此外,Palantir是灵活的,因为它允许不同的框架根据特定于框架的指标来定义接近度。我们设计并实现了一个数据中心感知的MapReduce来展示Palantir的实用性。我们的评估表明,基于Palantir,数据中心感知的MapReduce实现了显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Palantir: Reseizing Network Proximity in Large-Scale Distributed Computing Frameworks Using SDN
Parallel/Distributed computing frameworks, such as MapReduce and Dryad, have been widely adopted to analyze massive data. Traditionally, these frameworks depend on manual configuration to acquire network proximity information to optimize the data placement and task scheduling. However, this approach is cumbersome, inflexible or even infeasible in largescale deployments, for example, across multiple datacenters. In this paper, we address this problem by utilizing the Software-Defined Networking (SDN) capability. We build Palantir, an SDN service specific for parallel/distributed computing frameworks to abstract the proximity information out of the network. Palantir frees the framework developers/ administrators from having to manually configure the network. In addition, Palantir is flexible because it allows different frameworks to define the proximity according to the framework-specific metrics. We design and implement a datacenter-aware MapReduce to demonstrate Palantir's usefullness. Our evaluation shows that, based on Palantir, datacenter-aware MapReduce achieves siginficant performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1