E. Brewer, Gavin Haentjens, V. Gavrilets, G. McGraw
{"title":"小型无人机高完整性相对导航的低SWaP实现","authors":"E. Brewer, Gavin Haentjens, V. Gavrilets, G. McGraw","doi":"10.1109/PLANS.2014.6851490","DOIUrl":null,"url":null,"abstract":"Several aerial platforms rely on decimeter-level relative position accuracy for various applications including automatic takeoff and landing, precision targeting, and airborne refueling. For such applications, a Real Time Kinematic (RTK) GPS system provides a relatively low cost, robust, and reliable solution. Current commercial RTK products are inherently susceptible to jamming and spoofing. The Selective Availability Anti-Spoof Module (SAASM) implementations to date typically relied on relatively large and complicated architectures which would be difficult to port into a small (Groups 1-3) Unmanned Aircraft System (UAS) due to Size, Weight, and Power (SWaP) constraints. This paper describes the architecture, algorithms, and testing approach from Rockwell Collins high integrity relative navigation system including a SAASM-based RTK implementation for small UAS. A variant of the system was implemented for the Navy's Small Tactical Unmanned Aircraft System (STUAS) program. The STUAS system performed its first successful ship-based launch and recoveries on the U.S.S. Mesa Verde using Rockwell Collins high integrity relative navigation system in February of 2013.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low SWaP implementation of high integrity relative navigation for small UAS\",\"authors\":\"E. Brewer, Gavin Haentjens, V. Gavrilets, G. McGraw\",\"doi\":\"10.1109/PLANS.2014.6851490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several aerial platforms rely on decimeter-level relative position accuracy for various applications including automatic takeoff and landing, precision targeting, and airborne refueling. For such applications, a Real Time Kinematic (RTK) GPS system provides a relatively low cost, robust, and reliable solution. Current commercial RTK products are inherently susceptible to jamming and spoofing. The Selective Availability Anti-Spoof Module (SAASM) implementations to date typically relied on relatively large and complicated architectures which would be difficult to port into a small (Groups 1-3) Unmanned Aircraft System (UAS) due to Size, Weight, and Power (SWaP) constraints. This paper describes the architecture, algorithms, and testing approach from Rockwell Collins high integrity relative navigation system including a SAASM-based RTK implementation for small UAS. A variant of the system was implemented for the Navy's Small Tactical Unmanned Aircraft System (STUAS) program. The STUAS system performed its first successful ship-based launch and recoveries on the U.S.S. Mesa Verde using Rockwell Collins high integrity relative navigation system in February of 2013.\",\"PeriodicalId\":371808,\"journal\":{\"name\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2014.6851490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low SWaP implementation of high integrity relative navigation for small UAS
Several aerial platforms rely on decimeter-level relative position accuracy for various applications including automatic takeoff and landing, precision targeting, and airborne refueling. For such applications, a Real Time Kinematic (RTK) GPS system provides a relatively low cost, robust, and reliable solution. Current commercial RTK products are inherently susceptible to jamming and spoofing. The Selective Availability Anti-Spoof Module (SAASM) implementations to date typically relied on relatively large and complicated architectures which would be difficult to port into a small (Groups 1-3) Unmanned Aircraft System (UAS) due to Size, Weight, and Power (SWaP) constraints. This paper describes the architecture, algorithms, and testing approach from Rockwell Collins high integrity relative navigation system including a SAASM-based RTK implementation for small UAS. A variant of the system was implemented for the Navy's Small Tactical Unmanned Aircraft System (STUAS) program. The STUAS system performed its first successful ship-based launch and recoveries on the U.S.S. Mesa Verde using Rockwell Collins high integrity relative navigation system in February of 2013.