{"title":"引力波","authors":"J. Allday","doi":"10.1201/9781315165141-12","DOIUrl":null,"url":null,"abstract":"(a) gμνA ν = (b) If ∂ν is the contravariant gradient operator, η ∂ν = (c) ggjk = (d) ggAγδ = (e) If n̂ is a unit vector, then nni = (f) In spatial coordinates, δ i = 2. Start with a metric of the form gμν = ημν +hμν . From the definition of the Christoffel symbols Γμν and the Riemann tensor R μ νρσ, show that to linear order in hμν , the Riemann tensor becomes Rμνρσ = 1 2 (∂ν∂ρhμσ + ∂μ∂σhνρ − ∂μ∂ρhνσ − ∂ν∂σhμρ) . (1)","PeriodicalId":179016,"journal":{"name":"Space-time","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational Waves\",\"authors\":\"J. Allday\",\"doi\":\"10.1201/9781315165141-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(a) gμνA ν = (b) If ∂ν is the contravariant gradient operator, η ∂ν = (c) ggjk = (d) ggAγδ = (e) If n̂ is a unit vector, then nni = (f) In spatial coordinates, δ i = 2. Start with a metric of the form gμν = ημν +hμν . From the definition of the Christoffel symbols Γμν and the Riemann tensor R μ νρσ, show that to linear order in hμν , the Riemann tensor becomes Rμνρσ = 1 2 (∂ν∂ρhμσ + ∂μ∂σhνρ − ∂μ∂ρhνσ − ∂ν∂σhμρ) . (1)\",\"PeriodicalId\":179016,\"journal\":{\"name\":\"Space-time\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space-time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315165141-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space-time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315165141-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(a) gμνA ν = (b) If ∂ν is the contravariant gradient operator, η ∂ν = (c) ggjk = (d) ggAγδ = (e) If n̂ is a unit vector, then nni = (f) In spatial coordinates, δ i = 2. Start with a metric of the form gμν = ημν +hμν . From the definition of the Christoffel symbols Γμν and the Riemann tensor R μ νρσ, show that to linear order in hμν , the Riemann tensor becomes Rμνρσ = 1 2 (∂ν∂ρhμσ + ∂μ∂σhνρ − ∂μ∂ρhνσ − ∂ν∂σhμρ) . (1)