电气和电子电路用金刚石薄膜

A. Lay-Ekuakille, G. Cicala, A. Massaro, L. Velardi, G. Senesi
{"title":"电气和电子电路用金刚石薄膜","authors":"A. Lay-Ekuakille, G. Cicala, A. Massaro, L. Velardi, G. Senesi","doi":"10.1109/NANOFIM.2015.8425358","DOIUrl":null,"url":null,"abstract":"Diamond films grown by microwave plasma enhanced chemical vapor deposition technique exhibit different electrical conductivity. In particular, many factors such as substrate type, more or less hydrogenated surface, aging and doping change the electrical current of the diamond surface. There is an increasing need of diamond film for manifold applications because of its excellent behavior in emerging activities such as high-performing telecommunication systems, high-sensitive detecting pathology sensors within noisy human matrices with or without contrast agent, etc. Moreover, new ideas are still coming out from researchers and scientists to give out benefits to the entire area of research. The major finding is to carried circuit components and wired elements. In this paper we report the I- V characteristics of two polycrystalline diamond (PCD) films grown on intrinsic (i-Si) and p-doped silicon (p-Si) substrates. At 40 V the current of PCD film grown on p-Si is one order of magnitude higher than one on i-Si. The result suggests a possible application of diamond films in circuital elements or in more complex electronic components integrated into different substrates.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamond Films for Electrical and Electronic Circuitry\",\"authors\":\"A. Lay-Ekuakille, G. Cicala, A. Massaro, L. Velardi, G. Senesi\",\"doi\":\"10.1109/NANOFIM.2015.8425358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diamond films grown by microwave plasma enhanced chemical vapor deposition technique exhibit different electrical conductivity. In particular, many factors such as substrate type, more or less hydrogenated surface, aging and doping change the electrical current of the diamond surface. There is an increasing need of diamond film for manifold applications because of its excellent behavior in emerging activities such as high-performing telecommunication systems, high-sensitive detecting pathology sensors within noisy human matrices with or without contrast agent, etc. Moreover, new ideas are still coming out from researchers and scientists to give out benefits to the entire area of research. The major finding is to carried circuit components and wired elements. In this paper we report the I- V characteristics of two polycrystalline diamond (PCD) films grown on intrinsic (i-Si) and p-doped silicon (p-Si) substrates. At 40 V the current of PCD film grown on p-Si is one order of magnitude higher than one on i-Si. The result suggests a possible application of diamond films in circuital elements or in more complex electronic components integrated into different substrates.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微波等离子体增强化学气相沉积技术生长的金刚石薄膜具有不同的导电性。特别是衬底类型、氢化表面或多或少、老化和掺杂等因素改变了金刚石表面的电流。由于其在新兴活动中的优异表现,如高性能电信系统,在嘈杂的人体基质中使用或不使用造影剂的高灵敏度检测病理传感器等,因此对金刚石膜的多种应用需求日益增加。此外,研究人员和科学家们还在不断提出新的想法,为整个研究领域带来好处。主要发现是携带电路元件和有线元件。本文报道了在本征(I- si)和掺磷硅(p-Si)衬底上生长的两种多晶金刚石(PCD)薄膜的I- V特性。在40 V时,PCD薄膜在p-Si上生长的电流比在i-Si上生长的电流高一个数量级。结果表明,金刚石薄膜可能应用于电路元件或集成到不同衬底的更复杂的电子元件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diamond Films for Electrical and Electronic Circuitry
Diamond films grown by microwave plasma enhanced chemical vapor deposition technique exhibit different electrical conductivity. In particular, many factors such as substrate type, more or less hydrogenated surface, aging and doping change the electrical current of the diamond surface. There is an increasing need of diamond film for manifold applications because of its excellent behavior in emerging activities such as high-performing telecommunication systems, high-sensitive detecting pathology sensors within noisy human matrices with or without contrast agent, etc. Moreover, new ideas are still coming out from researchers and scientists to give out benefits to the entire area of research. The major finding is to carried circuit components and wired elements. In this paper we report the I- V characteristics of two polycrystalline diamond (PCD) films grown on intrinsic (i-Si) and p-doped silicon (p-Si) substrates. At 40 V the current of PCD film grown on p-Si is one order of magnitude higher than one on i-Si. The result suggests a possible application of diamond films in circuital elements or in more complex electronic components integrated into different substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Air/methane mixture ignition with Multi-Walled Carbon Nanotubes (MWCNTs) and comparison with spark ignition Effective Targeting of Hepatocellular Carcinoma through Glypican-3 Ligand Peptide Functionalization of Silica Nanoparticles Exploring CVD techniques for the growth of novel carbon nanostructures Highly Improved Cytocompatibility of Halloysite Nanotubes through Polymeric Surface Modification Carbon Nanotube Polymer Composites for High Performance Strain Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1