语言表征学习模式的比较研究

Sanae Achsas, E. Nfaoui
{"title":"语言表征学习模式的比较研究","authors":"Sanae Achsas, E. Nfaoui","doi":"10.1145/3419604.3419773","DOIUrl":null,"url":null,"abstract":"Recently, Natural Language Processing has shown significant development, especially in text mining and analysis. An important task in this area is learning vector-space representations of text. Since various machine learning algorithms require representing their inputs in a vector format. In this paper, we highlight the most important language representation learning models used in the literature, ranging from the free contextual approaches like word2vec and Glove until the appearance of recent modern contextualized approaches such as ELMo, BERT, and XLNet. We show and discuss their main architectures and their main strengths and limits.","PeriodicalId":250715,"journal":{"name":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Language representation learning models: A comparative study\",\"authors\":\"Sanae Achsas, E. Nfaoui\",\"doi\":\"10.1145/3419604.3419773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Natural Language Processing has shown significant development, especially in text mining and analysis. An important task in this area is learning vector-space representations of text. Since various machine learning algorithms require representing their inputs in a vector format. In this paper, we highlight the most important language representation learning models used in the literature, ranging from the free contextual approaches like word2vec and Glove until the appearance of recent modern contextualized approaches such as ELMo, BERT, and XLNet. We show and discuss their main architectures and their main strengths and limits.\",\"PeriodicalId\":250715,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3419604.3419773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419604.3419773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,自然语言处理在文本挖掘和分析方面取得了长足的发展。该领域的一个重要任务是学习文本的向量空间表示。因为各种机器学习算法需要以向量格式表示它们的输入。在本文中,我们重点介绍了文献中使用的最重要的语言表示学习模型,从自由的上下文方法如word2vec和Glove到最近出现的现代上下文化方法如ELMo、BERT和XLNet。我们展示并讨论了它们的主要架构以及它们的主要优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Language representation learning models: A comparative study
Recently, Natural Language Processing has shown significant development, especially in text mining and analysis. An important task in this area is learning vector-space representations of text. Since various machine learning algorithms require representing their inputs in a vector format. In this paper, we highlight the most important language representation learning models used in the literature, ranging from the free contextual approaches like word2vec and Glove until the appearance of recent modern contextualized approaches such as ELMo, BERT, and XLNet. We show and discuss their main architectures and their main strengths and limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Mining Semantically Enriched Configurable Process Models Optimized Switch-Controller Association For Data Center Test Generation Tool for Modified Condition/Decision Coverage: Model Based Testing SHAMan Use of formative assessment to improve the online teaching materials content quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1