基于位置动力学的多智能体三维仿真的平面局部行为

R. Sharma, Tomer Weiss, Marcelo Kallmann
{"title":"基于位置动力学的多智能体三维仿真的平面局部行为","authors":"R. Sharma, Tomer Weiss, Marcelo Kallmann","doi":"10.1109/AIVR50618.2020.00044","DOIUrl":null,"url":null,"abstract":"Position-Based Dynamics (PBD) has been shown to provide a flexible framework for modeling per-agent collision avoidance behavior for crowd and multi-agent simulations in planar scenarios. In this work, we propose to extend the approach such that collision avoidance reactions can utilize in a controlled way the volumetric 3D space around each agent when deciding how to avoid collisions with other agents. We propose to use separation planes for collision avoidance, using either preferred or automatically determined planes. Our results demonstrate the ability to control the spatial 3D behavior of simulated agents by constraining the produced movements according to the separation planes. Our method is generic and can be integrated with different crowd simulation techniques. We also compare our results with a 3D collision avoidance method based on Reciprocal Velocity Obstacles (RVOs).","PeriodicalId":348199,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Plane-Based Local Behaviors for Multi-Agent 3D Simulations with Position-Based Dynamics\",\"authors\":\"R. Sharma, Tomer Weiss, Marcelo Kallmann\",\"doi\":\"10.1109/AIVR50618.2020.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Position-Based Dynamics (PBD) has been shown to provide a flexible framework for modeling per-agent collision avoidance behavior for crowd and multi-agent simulations in planar scenarios. In this work, we propose to extend the approach such that collision avoidance reactions can utilize in a controlled way the volumetric 3D space around each agent when deciding how to avoid collisions with other agents. We propose to use separation planes for collision avoidance, using either preferred or automatically determined planes. Our results demonstrate the ability to control the spatial 3D behavior of simulated agents by constraining the produced movements according to the separation planes. Our method is generic and can be integrated with different crowd simulation techniques. We also compare our results with a 3D collision avoidance method based on Reciprocal Velocity Obstacles (RVOs).\",\"PeriodicalId\":348199,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR50618.2020.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR50618.2020.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于位置的动力学(PBD)为平面场景中人群和多智能体的避碰行为建模提供了一个灵活的框架。在这项工作中,我们建议扩展该方法,使避碰反应可以在决定如何避免与其他代理碰撞时,以受控的方式利用每个代理周围的体积三维空间。我们建议使用分离平面来避免碰撞,使用首选或自动确定的平面。我们的结果证明了通过根据分离平面约束产生的运动来控制模拟代理的空间三维行为的能力。该方法具有通用性,可与不同的人群仿真技术相结合。我们还将我们的结果与基于互反速度障碍(RVOs)的三维避碰方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plane-Based Local Behaviors for Multi-Agent 3D Simulations with Position-Based Dynamics
Position-Based Dynamics (PBD) has been shown to provide a flexible framework for modeling per-agent collision avoidance behavior for crowd and multi-agent simulations in planar scenarios. In this work, we propose to extend the approach such that collision avoidance reactions can utilize in a controlled way the volumetric 3D space around each agent when deciding how to avoid collisions with other agents. We propose to use separation planes for collision avoidance, using either preferred or automatically determined planes. Our results demonstrate the ability to control the spatial 3D behavior of simulated agents by constraining the produced movements according to the separation planes. Our method is generic and can be integrated with different crowd simulation techniques. We also compare our results with a 3D collision avoidance method based on Reciprocal Velocity Obstacles (RVOs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive and Scalable Layout Synthesis with Design Templates Under The (Plastic) Sea - Sensitizing People Toward Ecological Behavior Using Virtual Reality Controlled by Users’ Physical Activity Extended Abstract: CoShopper - Leveraging Artificial Intelligence for an Enhanced Augmented Reality Grocery Shopping Experience Augmented Reality and Autism Spectrum Disorder Rehabilitation: Scoping review Thermodynamics Reloaded: Experiencing Heating, Ventilation and Air Conditioning in AR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1