使用微调cnn集合的糖尿病足溃疡分类

E. Santos, Francisco Santos, J. Almeida, K. Aires, J. M. R. Tavares, R. Veras
{"title":"使用微调cnn集合的糖尿病足溃疡分类","authors":"E. Santos, Francisco Santos, J. Almeida, K. Aires, J. M. R. Tavares, R. Veras","doi":"10.1109/CBMS55023.2022.00056","DOIUrl":null,"url":null,"abstract":"Diabetic Foot Ulcers (DFU) are lesions in the foot region caused by diabetes mellitus. It is essential to define the appropriate treatment in the early stages of the disease once late treatment may result in amputation. This article proposes an ensemble approach composed of five modified convolutional neural networks (CNNs) - VGG-16, VGG-19, Resnet-50, InceptionV3, and Densenet-201 - to classify DFU images. To define the parameters, we fine-tuned the CNNs, evaluated different configurations of fully connected layers, and used batch normalization and dropout operations. The modified CNNs were well suited to the problem; however, we observed that the union of the five CNNs significantly increased the success rates. We performed tests using 8,250 images with different resolution, contrast, color, and texture characteristics and included data augmentation operations to expand the training dataset. 5-fold cross-validation led to an average accuracy of 95.04%, resulting in a Kappa index greater than 91.85%, considered “Excellent”.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diabetic Foot Ulcers Classification using a fine-tuned CNNs Ensemble\",\"authors\":\"E. Santos, Francisco Santos, J. Almeida, K. Aires, J. M. R. Tavares, R. Veras\",\"doi\":\"10.1109/CBMS55023.2022.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Foot Ulcers (DFU) are lesions in the foot region caused by diabetes mellitus. It is essential to define the appropriate treatment in the early stages of the disease once late treatment may result in amputation. This article proposes an ensemble approach composed of five modified convolutional neural networks (CNNs) - VGG-16, VGG-19, Resnet-50, InceptionV3, and Densenet-201 - to classify DFU images. To define the parameters, we fine-tuned the CNNs, evaluated different configurations of fully connected layers, and used batch normalization and dropout operations. The modified CNNs were well suited to the problem; however, we observed that the union of the five CNNs significantly increased the success rates. We performed tests using 8,250 images with different resolution, contrast, color, and texture characteristics and included data augmentation operations to expand the training dataset. 5-fold cross-validation led to an average accuracy of 95.04%, resulting in a Kappa index greater than 91.85%, considered “Excellent”.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

糖尿病足溃疡(DFU)是由糖尿病引起的足部病变。一旦晚期治疗可能导致截肢,在疾病的早期阶段确定适当的治疗是至关重要的。本文提出了一种由5个改进的卷积神经网络(cnn) VGG-16、VGG-19、Resnet-50、InceptionV3和Densenet-201组成的集成方法来对DFU图像进行分类。为了定义参数,我们对cnn进行了微调,评估了全连接层的不同配置,并使用了批处理归一化和dropout操作。改进后的cnn很适合这个问题;然而,我们观察到五个cnn的联合显著提高了成功率。我们使用8250张具有不同分辨率、对比度、颜色和纹理特征的图像进行测试,并包括数据增强操作来扩展训练数据集。5倍交叉验证平均准确率为95.04%,Kappa指数大于91.85%,为“优秀”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diabetic Foot Ulcers Classification using a fine-tuned CNNs Ensemble
Diabetic Foot Ulcers (DFU) are lesions in the foot region caused by diabetes mellitus. It is essential to define the appropriate treatment in the early stages of the disease once late treatment may result in amputation. This article proposes an ensemble approach composed of five modified convolutional neural networks (CNNs) - VGG-16, VGG-19, Resnet-50, InceptionV3, and Densenet-201 - to classify DFU images. To define the parameters, we fine-tuned the CNNs, evaluated different configurations of fully connected layers, and used batch normalization and dropout operations. The modified CNNs were well suited to the problem; however, we observed that the union of the five CNNs significantly increased the success rates. We performed tests using 8,250 images with different resolution, contrast, color, and texture characteristics and included data augmentation operations to expand the training dataset. 5-fold cross-validation led to an average accuracy of 95.04%, resulting in a Kappa index greater than 91.85%, considered “Excellent”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1