从预处理的Web日志中提取顺序访问模式

S. Vijayalakshmi, V. Mohan, M. S. Sassirekha, O. R. Deepika
{"title":"从预处理的Web日志中提取顺序访问模式","authors":"S. Vijayalakshmi, V. Mohan, M. S. Sassirekha, O. R. Deepika","doi":"10.1109/PACC.2011.5978983","DOIUrl":null,"url":null,"abstract":"Abstract-Finding Frequent Sequential Pattern (FSP) is an important problem in web usage mining. In this paper, we systematically explore a pattern-growth approach for efficient mining of sequential patterns in large sequence database. The approaches adopts a (divide and conquer) pattern-growth principle as follows: Sequence databases are recursively projected into a set of smaller projected databases based on the current sequential pattern(s), and sequential patterns are grown in each projected databases by exploring only locally frequent fragments. Our proposed method combines tree projection and prefix growth features from pattern-growth category with position coded feature from early-pruning category, all of these features are key characteristics of their respective categories, so we consider our proposed method as a pattern growth / early-pruning hybrid algorithm that considerably reduces execution time. These approaches were implemented in hybrid concrete method using algorithms of sequential pattern mining.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extracting Sequential Access Pattern from Pre-Processed Web Logs\",\"authors\":\"S. Vijayalakshmi, V. Mohan, M. S. Sassirekha, O. R. Deepika\",\"doi\":\"10.1109/PACC.2011.5978983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Finding Frequent Sequential Pattern (FSP) is an important problem in web usage mining. In this paper, we systematically explore a pattern-growth approach for efficient mining of sequential patterns in large sequence database. The approaches adopts a (divide and conquer) pattern-growth principle as follows: Sequence databases are recursively projected into a set of smaller projected databases based on the current sequential pattern(s), and sequential patterns are grown in each projected databases by exploring only locally frequent fragments. Our proposed method combines tree projection and prefix growth features from pattern-growth category with position coded feature from early-pruning category, all of these features are key characteristics of their respective categories, so we consider our proposed method as a pattern growth / early-pruning hybrid algorithm that considerably reduces execution time. These approaches were implemented in hybrid concrete method using algorithms of sequential pattern mining.\",\"PeriodicalId\":403612,\"journal\":{\"name\":\"2011 International Conference on Process Automation, Control and Computing\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Process Automation, Control and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACC.2011.5978983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5978983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

频繁序列模式(FSP)的发现是web使用挖掘中的一个重要问题。在本文中,我们系统地探索了一种高效挖掘大型序列数据库中序列模式的模式增长方法。该方法采用(分而治之)模式增长原则如下:序列数据库根据当前的序列模式递归地投影到一组较小的预测数据库中,序列模式通过仅探索局部频繁片段在每个预测数据库中增长。我们提出的方法结合了模式生长类别的树投影和前缀生长特征与早期修剪类别的位置编码特征,所有这些特征都是各自类别的关键特征,因此我们认为我们提出的方法是一种模式生长/早期修剪混合算法,大大减少了执行时间。这些方法在混合混凝土方法中使用顺序模式挖掘算法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Sequential Access Pattern from Pre-Processed Web Logs
Abstract-Finding Frequent Sequential Pattern (FSP) is an important problem in web usage mining. In this paper, we systematically explore a pattern-growth approach for efficient mining of sequential patterns in large sequence database. The approaches adopts a (divide and conquer) pattern-growth principle as follows: Sequence databases are recursively projected into a set of smaller projected databases based on the current sequential pattern(s), and sequential patterns are grown in each projected databases by exploring only locally frequent fragments. Our proposed method combines tree projection and prefix growth features from pattern-growth category with position coded feature from early-pruning category, all of these features are key characteristics of their respective categories, so we consider our proposed method as a pattern growth / early-pruning hybrid algorithm that considerably reduces execution time. These approaches were implemented in hybrid concrete method using algorithms of sequential pattern mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Network Soft Sensor Application in Cement Industry: Prediction of Clinker Quality Parameters Grid Based Security Framework for Online Trading An Advanced FACTS Controller for Power Flow Management in Transmission System Using IPFC Distributed Fault Diagnosis in Wireless Sensor Networks Automatic Control of Ash Extraction for a Wood Gasifier Using Fuzzy Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1